
For Use with MATLAB®

User’s Guide
Version 1

Image Acquisition
Toolbox Adaptor Kit

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Image Acquisition Toolbox Adaptor Kit User’s Guide
© COPYRIGHT 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

September 2005 PDF only New for Version 1.0(Release 14 SP3)

Contents
1
Getting Started

Overview . 1-2
What Knowledge Is Required? . 1-3

Creating an Adaptor . 1-4

Looking at the Demo Adaptor . 1-7
Finding the Demo Adaptor Source Files 1-7
Viewing the Demo Adaptor Source Files 1-9
Setting Breakpoints . 1-10
Building the Demo Adaptor . 1-11
Registering an Adaptor with the Toolbox 1-11
Running the Demo Adaptor . 1-12

2
Setting Up Your Build Environment

Overview . 2-2
Required Header Files . 2-2
Required Libraries . 2-3

Creating an Adaptor Project . 2-5
Adding the Adaptor Kit Project to Your Solution 2-8

Specifying Header File Locations . 2-9
Specifying Header Files in Microsoft Visual C++ .Net 2-9
Using Environment Variables . 2-10

Specifying Libraries and Library Paths 2-12
Specifying Libraries in Microsoft Visual C++ .Net 2-12

Configuring Other Project Parameters 2-15
i

ii Contents
Exporting Adaptor Functions . 2-19
Setting Up a Module Definition File . 2-19

3
Providing Hardware Information

Adaptor Exported Functions: An Overview 3-2

Creating a Stub Adaptor . 3-4

Performing Adaptor and Device SDK Initialization 3-7
Example . 3-7

Specifying Device and Format Information 3-8
Using Objects to Store Device and Format Information 3-8
Suggested Algorithm . 3-10
Storing Device Information . 3-11
Storing Format Information . 3-12
Example: Providing Device and Format Information 3-14

Defining Classes to Hold Device-Specific Information . . . 3-17
Defining a Device or Format Information Class 3-17
Storing Adaptor Data . 3-17

Unloading Your Adaptor DLL . 3-19
Example . 3-19

Returning Warnings and Errors to MATLAB 3-20

4
Defining Your Adaptor Class

Overview . 4-2

Summary of IAdaptor Abstract Class Virtual Functions . . 4-3

Creating a Stub Implementation of Your Adaptor Class . . 4-5

Identifying Video Sources . 4-10
Suggested Algorithm . 4-10

Instantiating an Adaptor Object . 4-12
Suggested Algorithm . 4-12
Implementing Your Adaptor Class Constructor 4-13
Implementing Your Adaptor Class Destructor 4-14

5
Acquiring Image Data

Overview . 5-2
User Scenario . 5-2
Triggering . 5-2
Overview of Virtual Functions Used to Acquire Data 5-3

Specifying the Format of the Image Data 5-5
Specifying Image Dimensions . 5-5
Specifying Frame Type . 5-7

Opening and Closing a Connection with a Device 5-10
Suggested Algorithm for openDevice() 5-10
Suggested Algorithm for closeDevice() 5-13

Starting and Stopping Image Acquisition 5-15
Suggested Algorithm for startCapture() 5-15
Suggested Algorithm for stopCapture() 5-17

Implementing the Acquisition Thread Function 5-19
User Scenario . 5-19
Suggested Algorithm . 5-19
Example . 5-22
iii

iv Contents
Supporting ROIs . 5-25
Implementing Software ROI . 5-25
Implementing Hardware ROI . 5-27

Supporting Hardware Triggers . 5-28
Example . 5-30

Using Critical Sections . 5-31
Understanding Critical Sections . 5-31
Example: Using a Critical Section . 5-32

Specifying Device Driver Identification Information 5-34
User Scenario . 5-34
Example . 5-34

6
Defining Device-Specific Properties

Overview . 6-2
User Scenario . 6-2
Suggested Algorithm . 6-3

Creating Device Properties . 6-6
Selecting the Property Creation Function 6-6
Reading Properties from an IMDF File 6-7
Creating Property Help . 6-7
Example . 6-8

Defining Hardware Trigger Configurations 6-10

Setting Up Property Listeners . 6-11
User Scenario . 6-11
Receiving Notification of Property Value Changes 6-11
Defining a Listener Class . 6-12
Creating the notify() Function . 6-13
Associating a Listener with a Property Container 6-15

7
Storing Adaptor Information in an IMDF File

Overview . 7-2
User Scenario . 7-2
Elements of the IMDF Markup Language 7-2

Creating an IMDF File: Toplevel Elements 7-4

Specifying Help in an IMDF File . 7-6
User Scenario: Viewing Property Help . 7-7
Creating AdaptorHelp Nodes . 7-9

Specifying Device Information . 7-11
Example: Device Node . 7-13

Specifying Property Information . 7-14
Specifying Property Element Attributes 7-15

Specifying Format Information . 7-18

Specifying Hardware Trigger Information 7-20
Specifying Trigger Sources . 7-21
Specifying Trigger Conditions . 7-22

Specifying Video Sources . 7-23

Defining and Including Sections . 7-24

Index
v

vi Contents

1

Getting Started

This section introduces the Image Acquisition Toolbox Adaptor Kit.

Overview (p. 1-2) Describes what an adaptor is and why you would build
one

Creating an Adaptor (p. 1-4) Describes the design decisions required to create an
adaptor and specifies a recommended procedure for
creating an adaptor

Looking at the Demo Adaptor (p. 1-7) Provides a quick introduction to adaptor development by
examining the demo adaptor that is included with the
adaptor kit

1 Getting Started

1-2
Overview
The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can
use to create an adaptor. A C++ framework is a set of classes that work together
to create a particular application. In a framework, the design of the software is
already defined. With the adaptor framework, you subclass the framework
classes and implement the required member functions to flesh out the design
to support your particular hardware.

An adaptor is a dynamic link library (DLL) that implements the connection
between the Image Acquisition Toolbox engine and a device driver via the
vendor’s software development kit (SDK).

You develop an adaptor to support new hardware. Adaptors enable the
dynamic loading of support for hardware without requiring recompilation and
linking of the toolbox. Using an adaptor to add hardware support gives you the
advantage of having multiple prepackaged features such as data logging,
triggering, and a standardized interface to the image acquisition device.

This diagram shows the relationship of an adaptor to the toolbox engine and a
device driver.

Relationship of Adaptor to Toolbox Components

M-files (MATLAB commands)

Image Acquisition Toolbox engine

Adaptor DLL

Vendor interface

Hardware

Overview
What Knowledge Is Required?
To build an adaptor, you should have a working knowledge of

• C++

• The functionality of your hardware device, and its associated application
programming interface (API)

• Image Acquisition Toolbox concepts, functionality, and terminology as
described in the Image Acquisition Toolbox User’s Guide documentation
1-3

1 Getting Started

1-4
Creating an Adaptor
To create an adaptor, you must implement the C++ routines and the classes
required by the adaptor framework. The following outlines one way to develop
an adaptor that divides the task into several smaller tasks, called stages. This
staged development model has been shown to be an effective way to create an
adaptor.

• “Stage 1: Familiarize Yourself with the Adaptor Kit and Device SDK” on
page 1-4

• “Stage 2: Set Up Your Build Environment” on page 1-5

• “Stage 3: Provide Hardware Information” on page 1-5

• “Stage 4: Creating a Video Input Object” on page 1-5

• “Stage 5: Acquiring Video Data” on page 1-5

• “Stage 6: Creating Device Properties” on page 1-6

Stage 1: Familiarize Yourself with the Adaptor Kit and Device SDK
Before you start developing an adaptor, you must gather information about the
device (or devices) to help you make design decisions.

• Familiarize yourself with adaptors and adaptor development by looking at
the demo adaptor which is included with the adaptor kit — see “Looking at
the Demo Adaptor” on page 1-7.

• Familiarize yourself with your device’s SDK. Devices provide the tools you
need to access and control them programmatically. You must learn your
device’s requirements for initialization, startup, and acquiring data, and the
SDK functions used to perform these tasks.

• Determine what device or devices you want to support with your adaptor.
You can create an adaptor to support one particular device, a group of devices
offered by a particular vendor, or a group of devices that all support a
common interface. You must also determine the formats supported by the
device and the properties of the device that you want to make available to
users of your adaptor.

Creating an Adaptor
Stage 2: Set Up Your Build Environment
You must set up the required adaptor build environment, which includes
specifying the names and locations of required header files and libraries.
Chapter 2, “Setting Up Your Build Environment” provides this information,
showing how to set up an adaptor project in Microsoft Visual C++ .Net.

Note Using Microsoft Visual C++ .Net is not a requirement to create an
adaptor. You can use any ANSI compatible C++ compiler. However, the
adaptor kit was created using the Microsoft Visual C++ .Net environment and
includes Microsoft Visual C++ .Net project files.

Stage 3: Provide Hardware Information
Your adaptor must provide the toolbox with information about the device (or
devices) it makes available to users. In this stage, you define the labels you
want to use to identify the devices available through your adaptor and the
formats they support. The toolbox displays these labels to users who must
specify the device and format they want to use for an acquisition.

In this stage, you start adaptor development by creating a stub implementation
of your adaptor. After building your adaptor DLL and registering it with the
toolbox, you can use the imaqhwinfo function and verify that the toolbox can
find your adaptor and load it. For more information about this stage, see
Chapter 3, “Providing Hardware Information.”

Stage 4: Creating a Video Input Object
You must define your adaptor class. Every adaptor must define an adaptor
class that is a subclass of the adaptor kit IAdaptor class.

In this stage, you add a stub implementation of your adaptor class to your
adaptor project. This enables you to call the videoinput function and
instantiate a video input object with your adaptor. For more information, see
Chapter 4, “Defining Your Adaptor Class.”

Stage 5: Acquiring Video Data
In this stage, you flesh out the stub implementations of the virtual functions in
your adaptor class. After completing this stage, you will be able to acquire data
from your device and bring it into the MATLAB workspace.
1-5

1 Getting Started

1-6
In addition, in this step you can also implement support for defining a
region-of-interest (ROI) in the acquiring data and for using hardware
triggering, if your device supports this capability. For more information, see
Chapter 5, “Acquiring Image Data.”

Stage 6: Creating Device Properties
In this stage, you decide which properties of the device you want to expose to
toolbox users. You make this determination by reading the device’s SDK
documentation, determining its capabilities, and deciding which capabilities
toolbox users will expect to configure. Once you decide to expose a property, you
must decide on a name for the property, determine its data type, and,
optionally, the range of valid values. As an alternative, you can define
device-specific properties in an image device definition file (IMDF). For more
information, see Chapter 6, “Defining Device-Specific Properties.”

Looking at the Demo Adaptor
Looking at the Demo Adaptor
A good way to get a quick introduction to adaptors and adaptor development is
by looking at the demo adaptor that is included with the Image Acquisition
Toolbox Adaptor Kit. The demo adaptor is a functioning adaptor that does not
require any hardware. You can build the demo adaptor and run it to get
familiar with how an adaptor works.

• “Finding the Demo Adaptor Source Files”

• “Viewing the Demo Adaptor Source Files” on page 1-9

• “Setting Breakpoints” on page 1-10

• “Building the Demo Adaptor” on page 1-11

• “Registering an Adaptor with the Toolbox” on page 1-11

• “Running the Demo Adaptor”

Finding the Demo Adaptor Source Files
The demo adaptor C++ source files reside in the following directory:

$MATLAB\toolbox\imaq\imaqadaptor\kit\demo\

To look at the source files in Microsoft Visual C++ .Net, open the demo adaptor
solution file, mwdemoimaq.sln.

The following table lists all the files in the demo directory in alphabetical order,
with brief descriptions.

Source File Description

DemoAdaptor.cpp Demo adaptor class implementation

DemoAdaptor.h Demo adaptor class definition

DemoDeviceFormat.cpp Implementation of class that holds device
format information

DemoDeviceFormat.h Definition of class that holds device
format information
1-7

1 Getting Started

1-8
DemoPropListener.cpp Implementation of class that notifies
demo adaptor when the value of a device
property changes

DemoPropListener.h Definition of class that notifies demo
adaptor when the value of a device
property changes

DemoSourceListener.cpp Implementation of class that listens for
changes in the selected video source

DemoSourceListener.h Definition of class used to listen for
changes in the selected video source

mwdemoimaq.cpp Implementation of the five functions that
every adaptor must export.

mwdemoimaq.def Module definition file that exports the five
functions that every adaptor must export

mwdemoimaq.dll Demo adaptor library. This is the compiled
and linked Dynamic Link Library (DLL)
that implements the demo adaptor.

mwdemoimaq.h Header file that defines the five functions
that every adaptor must export

mwdemoimaq.ilk Linker database file created automatically
by Microsoft Visual C++

mwdemoimaq.imdf Demo adaptor image device file (IMDF)
that contains property definitions

mwdemoimaq.sln Microsoft Visual C++ solution file for the
demo adaptor

mwdemoimaq.vcproj Microsoft Visual C++ project file for the
demo adaptor

Source File Description

Looking at the Demo Adaptor
Viewing the Demo Adaptor Source Files
This section describes a suggested order in which you should look at the demo
adaptor source files.

mwdemoimaq.h
A good place to start looking at the demo adaptor is to open the mwdemoimaq.h
file. This file defines the five functions that every adaptor must export. The
toolbox engine calls these functions to get information about supported
hardware, instantiate a video input object, and acquire data. Implementing
these functions is typically the first step an adaptor writer takes. This header
file contains comments that explain the purpose of each function. The
mwdemoimaq.def file is the module definition file in which these functions are
exported.

mwdemoimaq.cpp
After seeing the definition of the adaptor exported functions, see how they are
implemented in the corresponding C++ implementation file, mwdemoimaq.cpp.

DemoAdaptor.h
After viewing the exported functions, take a look at the definition of the
DemoAdaptor class in DemoAdaptor.h. The adaptor class is a subclass of the
IAdaptor class, which defines the virtual functions an adaptor must
implement. This header file contains comments that explain the purpose of
each member function.

DemoAdaptor.cpp
After seeing the definition of the adaptor class, look at the implementation of
the class in the DemoAdaptor.cpp file. This file contains the acquisition thread
function which is the main frame acquisition loop. This is where the adaptor
connects to the device and acquires image frames.

Other Demo Adaptor Files
The demo directory contains other files that implement optional adaptor kit
capabilities.

For example, the DemoDeviceFormat.h and corresponding .cpp files illustrate
one way to store device-specific format information using adaptor data. You
define a class that is a subclass of the IMAQInterface class to hold the
1-9

1 Getting Started

1-1
information. See “Defining Classes to Hold Device-Specific Information” on
page 3-17 for more information.

The DemoPropListener.h and corresponding .cpp files and the
DemoSourceListener.h and .cpp files illustrate how your adaptor can get
notified if a user changes the setting of a property. See “Setting Up Property
Listeners” on page 6-11 for more information.

Setting Breakpoints
You can use debugger breakpoints to examine which adaptor functions are
called when users call toolbox functions, such as imaqhwinfo, videoinput,
start, and stop. The following table lists places in the demo adaptor where you
can set a breakpoints.

MATLAB Command Breakpoint

imaqhwinfo initializeAdaptor()

imaqreset uninitializeAdaptor()

imaqhwinfo(adaptorname) getAvailHW()

videoinput getDeviceAttributes()

createInstance()

imaqhwinfo(obj) getDriverDescription()

getDriverVersion()

getMaxWidth()

getMaxHeight()

getFrameType()

videoinput getNumberOfBands()

start openDevice()
0

Looking at the Demo Adaptor
Building the Demo Adaptor
After familiarizing yourself with the demo adaptor source files, build the demo
adaptor DLL. By default, the demo adaptor project stores the DLL in the demo
adaptor directory. This directory already includes a demo adaptor DLL but you
can overwrite it.

Note To build the demo adaptor, you must have an environment variable
named MATLAB defined on your system. Set the value of this environment
variable to the location of your MATLAB installation directory. For
information about setting an environment variable on a Windows system, see
“Using Environment Variables” on page 2-10.

Registering an Adaptor with the Toolbox
After creating an adaptor, you must inform the Image Acquisition Toolbox of
its existence by registering it with the imaqregister function. This function
tells the toolbox where to find third-party adaptor libraries. You only need to
register your adaptor once. The toolbox stores adaptor location information in
your MATLAB preferences.

Note Because the toolbox caches adaptor information, you might need to
reset the toolbox, using imaqreset, before a newly registered adaptor appears
in the imaqhwinfo listing.

start or trigger, if manual
trigger

startCapture()

stop stopCapture()

closeDevice()

MATLAB Command Breakpoint
1-11

1 Getting Started

1-1
For example, the following code registers the demo adaptor with the toolbox
using the imaqregister function, where <your_directory> represents the
name of the directory where you created the demo adaptor.

imaqregister('<your_directory>\mwdemoimaq.dll');

Running the Demo Adaptor
Start MATLAB and call the imaqhwinfo function. You should be able to see the
demo adaptor included in the adaptors listed in the InstalledAdaptors field.

imaqhwinfo

ans =

 InstalledAdaptors: {'dcam' 'mwdemoimaq' 'winvideo'}
MATLABVersion: '7.1 (R14SP3)'

ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.9 (R14SP3)'

Create a video input object with the demo adaptor.

vid = videoinput('mwdemoimaq');

Get a preview of the data being returned by the demo adaptor using the
preview function. Note that the demo adaptor generates a grayscale pattern to
mimic the data returned by a real image acquisition device. The demo adaptor
does not connect to an actual device.

preview(vid);
2

Looking at the Demo Adaptor
Preview Window Containing Demo Adaptor Data
1-13

1 Getting Started

1-1
4

2

Setting Up Your Build
Environment

This chapter describes the libraries and include files you need to build an adaptor. The chapter also
provides details about setting up the build environment in Microsoft Visual C++ .Net.

Overview (p. 2-2) Provides a summary of the header files and libraries
required to create an adaptor

Creating an Adaptor Project (p. 2-5) Describes how to create a project in Microsoft Visual C++
.Net

Specifying Header File Locations
(p. 2-9)

Describes how to specify the locations of header files
required by the adaptor kit and your device’s SDK

Specifying Libraries and Library Paths
(p. 2-12)

Describes how to specify the names and locations of the
link libraries required by the adaptor kit and your
device’s SDK

Configuring Other Project Parameters
(p. 2-15)

Describes some other Microsoft Visual C++ .Net
parameter configurations required to create an adaptor

Exporting Adaptor Functions (p. 2-19) Describes how to create a module definition file and
configure it in the Microsoft Visual C++ .Net environment

2 Setting Up Your Build Environment

2-2
Overview
Setting up the build environment involves specifying the header files and
libraries that you need to create an adaptor. For those familiar with their IDE
environment, see the following sections for lists of these required include files
and libraries.

• “Required Header Files”

• “Required Libraries” on page 2-3

For detailed instructions on setting up your build environment in the Microsoft
Visual C++ .Net environment, start at “Creating an Adaptor Project” on
page 2-5.

Note Users of Microsoft Visual C++ .Net should be aware that there are
certain project parameters that they must set. See “Configuring Other Project
Parameters” on page 2-15.

Required Header Files
The following table lists the locations of the header files that are required to
build an adaptor. In the table, the path dereferences the environment variable
MATLAB which contains the name of your MATLAB installation directory. (For
more information, see “Using Environment Variables” on page 2-10.) To learn
how to specify this header file location information in Microsoft Visual C++
.Net, see “Specifying Header Files in Microsoft Visual C++ .Net” on page 2-9.

Overview
Note You must also specify the location of the header files required by your
device. Read your device’s SDK documentation to get this information.

Required Libraries
The following table lists the libraries required by the adaptor kit. In the table,
the path dereferences the environment variable MATLAB, which is set to the
name of your MATLAB installation directory. (See “Using Environment
Variables” on page 2-10 for more information.) To learn how to specify the
locations of these libraries in Microsoft Visual C++ .Net, see “Specifying
Libraries in Microsoft Visual C++ .Net” on page 2-12.

Header Files Location

Adaptor kit header
files

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\include

MATLAB external
interfaces header
files

$(MATLAB)\extern\include
2-3

2 Setting Up Your Build Environment

2-4
Note You must also specify the libraries required by your device. Read your
device’s SDK documentation to determine which libraries are required and get
their locations.

Library Description Location

libmex.lib MATLAB MEX
interface library

$(MATLAB)\extern\lib\win32\microsoft\msvc71\

libmx.lib MATLAB array
interface library

$(MATLAB)\extern\lib\win32\microsoft\msvc71\

imaqmex.lib Image
Acquisition
Toolbox engine
library

Debug version:

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\lib\win32\debug\

Release version:

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\lib\win32\release\

Creating an Adaptor Project
Creating an Adaptor Project
As the first step toward building an adaptor, open Microsoft Visual C++ .Net
and create a new project.

Note Using Microsoft Visual C++ .Net is not a requirement to create an
adaptor. You can use any ANSI compatible C++ compiler. However, the
adaptor kit was created using the Visual C++ .Net environment and includes
a Visual C++ .Net solution file.

1 Start Microsoft Visual C++ .Net.

2 On the Visual C++ .Net Start Page, click New Project. Visual C++ opens
the New Project dialog box, shown in the following figure. You can also open
this dialog box by from the File menu: File->New->Project.

3 In the New Project dialog box, under Project Types, expand the Visual C++
Projects folder, open Win32 folder, and click Win32 project.

4 Enter the name you want to assign to the project and specify where you want
to locate the project in the Name and Location fields.

You can give your adaptor project any name. A convention used by the
toolbox is to name adaptors as follows:

vendor_name + imaq

where you replace the string vendor_name with something appropriate to
your project. For example, this documentation specifies the project name
mydeviceimaq. Microsoft Visual C++ .Net uses the project name as the
default adaptor DLL name. To specify a different name for the adaptor DLL,
open the project property pages (Project->Properties), open the Linker
folder, click General and edit the Output File field.
2-5

2 Setting Up Your Build Environment

2-6
When you click OK, Visual C++ opens the Win32 Application Wizard.

5 In the Win32 Application Wizard, click Application Settings.

6 On the Application Settings page, select DLL from the list of application
types and select Empty project from the Application options section. Click
Finish to create the project.

Select Win32.

Specify name and
location of project.

Choose Win32 Project.

Click OK to create
the project.

Creating an Adaptor Project
After you create the project, Visual C++ displays the project in its Solution
Explorer, with separate folders for source files, header files, and other project
resources, as shown in the following figure.

Click Application Settings. Select DLL and Empty project.

Click Finish to create the project.
2-7

2 Setting Up Your Build Environment

2-8
Adding the Adaptor Kit Project to Your Solution
When you create a project, Microsoft Visual C++ .Net automatically creates a
solution that contains your project. As a convenience, while you are developing
your adaptor, you might want to add the adaptor kit project to your solution to
make it easier to refer to adaptor kit files. Adding the adaptor kit project to
your solution does not affect the compilation or linkage of your adaptor DLL.

To add the adaptor kit project to your solution, go to the File menu, select the
Add Project option, and then select Add an Existing Project. In the Add
Existing Project dialog box, open the following project file,

$MATLAB\toolbox\imaq\imaqadaptors\kit\imaqadaptorkit.vcproj

where $MATLAB represents your MATLAB installation directory.

New project

Specifying Header File Locations
Specifying Header File Locations
Before you can compile your adaptor, you must specify the locations of the
header files required by the adaptor kit and by your device’s SDK. For a list of
the header files required by the adaptor kit, see “Overview” on page 2-2. The
following section describes how to specify these header file locations in the
Microsoft Visual C++ .Net environment.

Note The examples in the following section use environment variables. For
more information, see “Using Environment Variables” on page 2-10.

Specifying Header Files in Microsoft Visual C++ .Net
To specify the locations of the adaptor kit header files in Microsoft Visual C++
.Net, follow these instructions:

1 From the Tools menu, select Options.

2 In the Options dialog box, open the Projects folder and select VC++
Directories.

3 Select Include files from the Show directories for field.

4 Add the locations of adaptor kit header files and the header files required by
your device’s SDK to the list of directories displayed, each on a separate line.

$(MATLAB)\toolbox\imaq\imaqadaptors\kit\include
$(MATLAB)\extern\include

In this example, $(MATLAB) dereferences the environment variable MATLAB,
which is set to the name of your installation directory. (See “Using
Environment Variables” on page 2-10 for more information.)
2-9

2 Setting Up Your Build Environment

2-1
5 After specifying the header file directories, click OK.

Using Environment Variables
To set an environment variable for your MATLAB installation directory in
Windows, follow this procedure:

1 Open the System Properties dialog box. One way to do this is to right-click
the My Computer icon on your desktop and select Properties.

2 Click the Advanced tab.

3 On the Advanced tab, click the Environment Variables button.

4 In the Environment Variables dialog box, in the User variables section,
click New to create an environment variable.

Select Include files. Choose VC++ Directories.

Enter directory name.
0

Specifying Header File Locations
5 In the New User Variable dialog box, assign the name MATLAB to the variable
and set the value of the variable to your MATLAB installation directory
path. Click OK.

6 Click OK in the Environment Variables dialog box.

7 Click OK in the System Properties dialog box.

Note If Microsoft Visual C++ .Net is running when you create this variable,
you must restart it.
2-11

2 Setting Up Your Build Environment

2-1
Specifying Libraries and Library Paths
Before you can create your adaptor DLL, you must specify the libraries
required by the adaptor kit and by your device’s SDK. For a list of required
libraries, see “Overview” on page 2-2. The following section describes how to
specify these libraries in the Microsoft Visual C++ .Net environment.

Note The examples in the following section use environment variables. For
more information, see “Using Environment Variables” on page 2-10.

Specifying Libraries in Microsoft Visual C++ .Net
Specifying libraries in Microsoft Visual C++ .Net is a two-step process. First
you specify the locations of the libraries and then, in a separate field, you
specify the names of the libraries. The following shows this procedure.

Specifying Library Locations

1 Open the Property Pages for your project by right-clicking on your project in
the Solution Explorer and choosing Properties, or by selecting Properties
from the Project menu.

2 Open the Linker folder and select the General category.

3 Add the locations of adaptor kit libraries and the libraries required by your
device’s SDK in the Additional Library Directories field. Use a semicolon
to separate the directories.

Note The following example specifies the debug version of the imaqmex
library. If you want to use the release version of this library, change the last
directory name in the path to release.
2

Specifying Libraries and Library Paths
$(MATLAB)\extern\lib\win32\microsoft\msvc71\;$(MATLAB)\toolbox\imaq\
imaqadaptors\kit\lib\win32\debug

In this example, $(MATLAB) dereferences the environment variable MATLAB,
which is set to the name of your installation directory. (See “Using
Environment Variables” on page 2-10 for more information.)

Specifying Library Names
After specifying the library directories, you must specify the library names.

1 In the Property Pages dialog box for your project, open the Linker folder and
select the Input category.

2 In the Additional Dependencies field, specify the names of the adaptor kit
libraries and the names of the libraries required by your device’s SDK. Use

Choose the General category. Specify the library locations.
2-13

2 Setting Up Your Build Environment

2-1
spaces to separate the names of the libraries. The following shows the
adaptor kit libraries.

libmex.lib libmx.lib imaqmex.lib

3 Click OK.

Choose the Input category. Specify the names of the required libraries.
4

Configuring Other Project Parameters
Configuring Other Project Parameters
In addition to specifying the header files and libraries, an adaptor project
requires these additional settings. These settings must be done for both release
and debug builds; otherwise, run-time problems might occur.

Note To set the values of these properties, your project must contain files.
You can add an empty source file to your project now. Select New on the File
menu, save the file, and then add it to your project. Alternatively, you can wait
to perform these configurations until you start writing adaptor code, described
in “Providing Hardware Information” on page 3-1.

1 Open the Property Pages for your project by right-clicking on your project in
the Solution Explorer and choosing Properties, or by selecting Properties
from the Project menu.

2 Open the C/C++ folder and select Code Generation.
2-15

2 Setting Up Your Build Environment

2-1
3 On the Code Generation page, set the following values.

4 In the C/C++ folder, select Language and set the Enable Run-time Type
Info field to Yes.

Field Setting

Enable C++ Exceptions No

Run-time library Multi-threaded DLL (for release builds) or

Multi-threaded Debug DLL (for debug builds)

Choose Code Generation.
6

Configuring Other Project Parameters
5 In the C/C++ folder select Command Line and specify the following
compiler flag.

/EHsc-

Choose Language. Set this value to Yes.
2-17

2 Setting Up Your Build Environment

2-1
6 Click OK.

Choose Command Line. Specify this command-line option.
8

Exporting Adaptor Functions
Exporting Adaptor Functions
Your adaptor must export certain functions that are expected by the Image
Acquisition Toolbox engine. You use a module definition file (.def) to export
functions in a DLL. (For general information about module definition files, go
to the MSDN Web site.)

The following section describes how to set up a module definition file in your
adaptor project. To learn more about what an adaptor’s module definition file
must contain, see “Creating a Stub Adaptor” on page 3-4.

Setting Up a Module Definition File
To set up a module definition file in Microsoft Visual C++ .Net, follow these
instructions.

1 From the File menu in Microsoft Visual C++ .Net, select New and then
choose File. Visual C++ opens the New File dialog box.

2 Under Categories, select General. From the file types listed in this category,
select Text File and click Open, or double-click the icon representing the file
type.

3 From the File menu, select the Save as option and specify the name you
want to assign to the file, using the file extension .def. Adaptor writers
typically use the project name as the name of the module definition file.

4 Add the module definition file to your adaptor project, using the Move File
into Project option.
2-19

2 Setting Up Your Build Environment

2-2
5 After you create a module definition file and add it to your project, you must
tell Visual C++ where to find it. Select your project in the Solutions Explorer,
open the Project menu and choose Properties.

6 In the Properties Pages dialog box, open the Linker folder and select the
Input category.

7 Select Edit in the Module Definition File field and specify the name of the
module definition file, as in the following example.

Module
definition file
0

Exporting Adaptor Functions
8 Click OK.

Specify name of module definition file.Select Input.
2-21

2 Setting Up Your Build Environment

2-2
2

3

Providing Hardware
Information

This chapter describes how an adaptor provides the toolbox engine with information about the image
acquisition device (or devices) available on a user’s system. After completing the tasks outlined in
this chapter, you will be able to create your adaptor DLL, register it with the toolbox, and see it
included in the list of available adaptors returned by imaqhwinfo.

Adaptor Exported Functions: An
Overview (p. 3-2)

Provides an overview of the five required functions that
every adaptor must export, including a flow-of-control
diagram

Creating a Stub Adaptor (p. 3-4) Describes how to create a stub implementation of your
adaptor

Performing Adaptor and Device SDK
Initialization (p. 3-7)

Describes how to perform any initialization required by
your adaptor or by your device’s SDK

Specifying Device and Format
Information (p. 3-8)

Describes how to write the function that provides the
toolbox with information about the devices currently
available on the user’s system

Defining Classes to Hold
Device-Specific Information (p. 3-17)

Describes an optional method for storing additional
device-specific information

Unloading Your Adaptor DLL (p. 3-19) Describes how to write the function that can perform any
cleanup required when your adaptor DLL is unloaded

Returning Warnings and Errors to
MATLAB (p. 3-20)

Describes how to return errors and warnings that are
consistent with the MATLAB error format

3 Providing Hardware Information

3-2
Adaptor Exported Functions: An Overview
The Image Acquisition Toolbox engine requires that every adaptor export five
functions. The toolbox calls these functions to communicate with the device and
acquire data. One of your primary tasks as an adaptor writer is to provide
implementations of these functions. The following table lists these five
exported functions with pointers to sections that provide more detail about how
to implement the function.

The following figure shows the flow of control between the MATLAB command
line, the toolbox engine, and the exported adaptor functions. Note that the
figure does not show how the adaptor communicates with the device’s SDK to
get information. This varies with each device’s SDK.

Export Function Purpose

initializeAdaptor() Performs any initialization required by your adaptor or your
device’s SDK. See “Performing Adaptor and Device SDK
Initialization” on page 3-7.

getAvailHW() Provides the toolbox engine with information about the device
(or devices) available through your adaptor

getDeviceAttributes() Specifies the video source, device-specific properties, and
hardware trigger information, if supported. See “Defining
Device-Specific Properties” on page 6-1.

createInstance() Instantiates an object of a C++ class that represents the
communication between the toolbox and the device.

Note: Because you cannot create a stub of this function until
you define an adaptor class, this function is described in
“Defining Your Adaptor Class” on page 4-1.

uninitializeAdaptor() Performs any cleanup required by your adaptor and unloads
the adaptor DLL. See “Unloading Your Adaptor DLL” on
page 3-19.

Adaptor Exported Functions: An Overview
Flow of Control Among MATLAB, Toolbox Engine, and Adaptor

MATLAB AdaptorToolbox Engine

imaqhwinfo Engine searches for adaptor
DLLs and loads them.

initializeAdaptor()

imaqhwinfo('adaptor') Engine queries adaptor to find all
devices available through it.

getAvailHW()

Engine queries adaptor for
device-specific property information.

getDeviceAttributes()

createInstance().

Returns list of available adaptors.

Returns list of devices and
supported formats.

videoinput('adaptor')

Returns video input object.

Adds device information to
IHardwareInfo object.

Engine instantiates an object of
your adaptor class.

Fills in source and property
information objects.

Returns a handle to your
adaptor object.

imaqreset Engine performs cleanup tasks. uninitializeAdaptor()
3-3

3 Providing Hardware Information

3-4
Creating a Stub Adaptor
The easiest way to start building an adaptor is to create a stub implementation,
compile and link it, and then test your work. This method can be effective
because it provides immediate results and lets you verify that your build
environment is setup properly.

This section shows a stub implementations of an adaptor that you can copy and
paste into a file in your adaptor Microsoft Visual C++ .Net project. After
compiling and linking this code, you can see your adaptor included in the list
of available adaptors returned by the imaqhwinfo function.

Note You will not be able to instantiate an object of your adaptor class,
however. That is described in “Defining Your Adaptor Class” on page 4-1

To create a stub adaptor, follow this procedure:

1 Add a C++ source file to the adaptor C++ project. See “Setting Up Your Build
Environment” on page 2-1 for information about creating an adaptor C++
project. This source file will hold your implementations of your adaptor’s
exported C++ functions. You can give this file any name. This example uses
the name of the adaptor for this file, with the text string "_exported_fcns"
appended to it, mydevice_exported_fcns.cpp

2 Copy the following lines of C++ code into this new file. This code provides
stub implementations of several adaptor exported functions. Note that you
must include the adaptor kit header file mwadaptorimaq.h. This header file
includes all other required adaptor kit header files.

#include "mwadaptorimaq.h"

void initializeAdaptor(){

}
void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo){

}

void uninitializeAdaptor(){

Creating a Stub Adaptor
}

3 Add a module definition file to the adaptor C++ project to export the
functions. A module definition file is a text file that contains statements that
affect linker behavior. To learn how to create a module definition file, see
“Exporting Adaptor Functions” on page 2-19.

You can give your module definition file any name. This example gives it the
same name as the adaptor project, with the .def file extension,
mydeviceimaq.def.

To export the functions created in the previous step, copy the following lines
of code into your module definition file.

LIBRARY mydeviceimaq
EXPORTS
 initializeAdaptor @1

getAvailHW @2
uninitializeAdaptor @3

4 Build the adaptor DLL. Select the Build Solution option on the Build menu.

5 Start MATLAB.

6 Tell the toolbox where to find this new adaptor using the imaqregister
function. See “Registering an Adaptor with the Toolbox” on page 1-11 for
more information. You only need to perform this step once.

7 Call the imaqhwinfo function. Note that the stub adaptor, named
mydeviceimaq, is included in the list of available adaptors returned.

imaqhwinfo

ans =

 InstalledAdaptors: {'mydeviceimaq' 'winvideo'}
 MATLABVersion: '7.1 (R14SP3)'
 ToolboxName: 'Image Acquisition Toolbox'
3-5

3 Providing Hardware Information

3-6
 ToolboxVersion: '1.9 (R14SP3)'

To get more information about the stub adaptor, call imaqhwinfo again, this
time specifying the name of the adaptor. Note that the DeviceIDs field and
the DeviceInfo fields are empty.

imaqhwinfo('mydeviceimaq')

ans =

 AdaptorDllName: 'D:\Work\mydeviceimaq\mydeviceimaq.dll'
 AdaptorDllVersion: '1.8 (R14SP2)'
 AdaptorName: 'mydeviceimaq'
 DeviceIDs: {1x0 cell}
 DeviceInfo: [1x0 struct]

Performing Adaptor and Device SDK Initialization
Performing Adaptor and Device SDK Initialization
Every adaptor must include an initializeAdaptor() function. In this
function, you should perform any initialization required by your adaptor or
your device’s SDK. Check the documentation that came with your device to find
out what, if any, initialization the SDK requires.

For example, some device SDKs provide a function that loads required DLLs
into memory. Not every device’s SDK requires initialization; however, every
adaptor must include the initializeAdaptor() function, even if it is an empty
implementation.

Note You do not perform device initialization in this function. For
information about performing device initialization, see “Opening and Closing
a Connection with a Device” on page 5-10.

Example
As defined by the adaptor kit, the initializeAdaptor() function accepts no
arguments and does not return a value. The following example implements an
empty initializeAdaptor() function.

void initializeAdaptor()
{

// Perform initialization required by adaptor or device SDK.

}

3-7

3 Providing Hardware Information

3-8
Specifying Device and Format Information
Every adaptor must include a getAvailHW() function. In this function, you
provide the toolbox with information about the device (or devices) that are
currently connected to the user’s system. An adaptor can represent one
particular device, multiple devices supported by a particular vendor, or a class
of devices. For example, the toolbox includes an adaptor for Matrox devices
that supports many different framegrabbers provided by that vendor.

When a user calls the imaqhwinfo function to find out which devices are
available on their system, the toolbox engine calls your adaptor’s getAvailHW()
function to get this information. When you implement this function, you
determine the names, device IDs, and format names that the toolbox displays
to users.

This section includes the following topics

• “Using Objects to Store Device and Format Information” on page 3-8

• “Suggested Algorithm” on page 3-10

• “Storing Device Information” on page 3-11

• “Storing Format Information” on page 3-12

• “Storing Adaptor Data” on page 3-17

Using Objects to Store Device and Format
Information
The adaptor kit provides three classes to store device and format information.
The following table lists these classes with a brief description.

Adaptor Kit Object Purpose

IHardwareInfo Overall container class for hardware information

IDeviceInfo Container for information about a particular
device

IDeviceFormat Container for information about the formats
supported by a particular device

Specifying Device and Format Information
When the toolbox engine calls your adaptor’s getAvailHW() function, it passes
your adaptor a handle to an IHardwareInfo object.

For each device you want to make available through your adaptor, you must
create an IDeviceInfo object and then store the object in the IHardwareInfo
object. For each format supported by a device, you must create an
IDeviceFormat object and then store the object in the IDeviceInfo object.

The following figure shows the relationship of these adaptor kit objects. The
figure shows the IHardwareInfo object containing two IDeviceInfo objects,
but it can contain more. Similarly, each IDeviceInfo object is shown
containing two IDeviceFormat objects, but it can also contain more.

Note in the figure that both the IDeviceInfo and IDeviceFormat objects
contain adaptor data. Adaptor data is an optional way to store additional
information about a device or format in an IDeviceInfo or IDeviceFormat
object. See “Defining Classes to Hold Device-Specific Information” on page 3-17
for more information.

Adaptor Kit Objects Used to Store Device and Format Information

IHardwareInfo object

IDeviceInfo object

IDeviceFormat
object

IDeviceFormat
object

Adaptor data used to store
additional format information

Adaptor data used to store
additional device information

IDeviceInfo object

IDeviceFormat
object

IDeviceFormat
object
3-9

3 Providing Hardware Information

3-1
Suggested Algorithm
The getAvailHW() function accepts one argument: the handle to an
IHardwareInfo object. The toolbox engine creates this IHardwareInfo object
and passes the handle to your adaptor when it calls your adaptor’s
getAvailHW() function. The getAvailHW() function does not return a value.

void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo)

Your adaptor’s getAvailHW() function must provide the engine with the
following information for each device:

• Device ID

• Device name

• Formats supported by the device, including the default format

• Whether or not the device supports device configuration files (also known as
camera files)

Note You can optionally store additional device-specific information in the
adaptor data of an IDeviceInfo object or an IDeviceFormat object. See
“Defining Classes to Hold Device-Specific Information” on page 3-17 for more
information.

The following outlines the steps typically performed by a getAvailHW()
function. The figure that follows presents this algorithm in flowchart form.

1 Determine which devices are available through the adaptor. Adaptors
typically make calls to the device’s SDK to get this information.

2 For each device found, create an IDeviceInfo object — see “Storing Device
Information” on page 3-11.

a For each format supported by the device, create an IDeviceFormat object
— see “Storing Format Information” on page 3-12.

b Add each device format object that you create to the IDeviceInfo object.

3 Add the IDeviceInfo object to the IHardwareInfo object passed to your
getAvailHW() function by the toolbox engine.
0

Specifying Device and Format Information
4 Repeat this procedure for each device available on the user’s system.

Suggested Algorithm for getAvailHW() Function

Storing Device Information
You store device information in an IDeviceInfo object. To create this object,
use the createDeviceInfo() member function of the IHardwareInfo object, as
in the following example:

imaqkit::IDeviceInfo* deviceInfo =
hardwareInfo->createDeviceInfo(1,"MyDevice");

Find device?Exit.

Yes

Create IDeviceFormat object to
represent format.

 No

Create IDeviceInfo object to
represent device.

No
Find format
supported by
device?

 Yes

Add IDeviceInfo object to
IHardwareInfo object.

Add IDeviceFormat object to
IDeviceInfo object.

 Start.
3-11

3 Providing Hardware Information

3-1
As arguments to createDeviceInfo(), you specify:

• Name you want to assign to the device

• ID you want to assign to the device

You can specify any values for these arguments, but note that they are visible
to toolbox users in the structure returned by imaqhwinfo.

For device name, specify a text string that easily identifies the device. For
example, you might use the manufacturer’s model number.

The ID you specify for the device must be unique because it identifies the device
for the adaptor. Because MATLAB indexing starts at 1, start the numbering of
device IDs at 1, not zero. The device with ID 1 is the default device for your
adaptor.

The IDeviceInfo object you create supports member functions to perform
many tasks, such as creating, adding, and retrieving the IDeviceFormat
objects associated with the device, and indicating whether the device supports
device configuration files (also known as camera files). For more information
about this class, see the Image Acquisition Toolbox Adaptor Kit API Reference
documentation.

Adding the IDeviceInfo Object to the IHardwareInfo Object
After you create the IDeviceInfo object, you must add it to the IHardwareInfo
object that the engine passed to your getAvailHW() function. Use the
addDevice() member function of the IHardwareInfo object, as in the following
example:

hardwareInfo->addDevice(deviceInfo);

Storing Format Information
You store format information in an IDeviceFormat object. To create this object,
use the createDeviceFormat() member function of an IDeviceInfo object, as
in the following example:

imaqkit::IDeviceFormat* deviceFormat =
deviceInfo->createDeviceFormat(1,"RS170");

As arguments to createDeviceFormat(), you specify

• Name you want to assign to the format
2

Specifying Device and Format Information
• ID you want to assign to the format

For the format name, specify a text string that describes the format. Note that
the format name is visible to toolbox users. Use names that might be familiar
to users of the device, such as a name similar to the format names used by the
device manufacturer.

Because the ID is not exposed to users, you can specify any convenient value.
For example, if the device’s SDK uses numerical identifiers to indicate a
format, use these values for your format IDs.

You can use IDeviceFormat member functions to perform many tasks, such as,
retrieving the format name and format ID, and determining whether the
format is the default format.For more information about this class, see the
Image Acquisition Toolbox Adaptor Kit API Reference documentation.

Adding an IDeviceFormat Object to an IDeviceInfo Object
After you create the IDeviceFormat object, add it to the IDeviceInfo object
that represents the device. Use the addDeviceFormat() member function of the
IDeviceInfo object, as in the following example:

deviceInfo->addDeviceFormat(deviceFormat,true);

Specifying the Default Format
When you add a format to an IDeviceInfo object, you use the second argument
to the addDeviceFormat() function to specify whether the format should be
used as the default format for the device. The imaqhwinfo function returns the
name of the default format in the DefaultFormat field. To make a format the
default, set this argument to true.

Configuring Device Configuration File (Camera File) Support
Some devices use device configuration files (also known as camera files) to
configure formats and other properties. If a device supports device
configuration files, you do not need to create IDeviceFormat objects. Instead,
use the setDeviceFileSupport() member function of the IDeviceInfo object
to indicate that the device supports device configuration files, as in the
following example:

 deviceInfo->setDeviceFileSupport(true);
3-13

3 Providing Hardware Information

3-1
For these devices, users pass the full path of the device configuration file as the
third argument to the videoinput function, instead of specifying a device
format string. Adaptor writers do not need to perform any processing of the
device configuration file; you just pass the file name to the device.

Example: Providing Device and Format Information
The following example presents a simple implementation of a getAvailHW()
function that specifies information for one device with two formats. The intent
of this example is to show how you create the objects necessary to store device
and format information. If you add this code to the mydeviceimaq adaptor, you
can run imaqhwinfo('mydeviceimaq') to view the device information.

1 Replace the stub implementation of the getAvailHW() function, created in
“Creating a Stub Adaptor” on page 3-4, with this code:

void getAvailHW(imaqkit::IHardwareInfo* hardwareInfo)
{

// Create a Device Info object.
imaqkit::IDeviceInfo* deviceInfo =

hardwareInfo->createDeviceInfo(1,"MyDevice");

 // Create a Device Format object.
imaqkit::IDeviceFormat* deviceFormat =

deviceInfo->createDeviceFormat(1,"RS170");

 // Add the format object to the Device object.
 // Specifying "true' makes this format the default format.

deviceInfo->addDeviceFormat(deviceFormat, true);

 // Create a second Device Format object.
imaqkit::IDeviceFormat* deviceFormat2 =

deviceInfo->createDeviceFormat(2,"PAL");

 // Add the second format object to the Device object.
 deviceInfo->addDeviceFormat(deviceFormat2, false);

 // Add the device object to the hardware info object.
hardwareInfo->addDevice(deviceInfo);

}

4

Specifying Device and Format Information
2 Rebuild the mydeviceimaq project to create a new DLL.

3 Start MATLAB and run the imaqhwinfo function, specifying the adaptor
name mydeviceimaq as an argument. Note how the DeviceIDs field and the
DeviceInfo field of the structure returned by imaqhwinfo now contain data.

dev = imaqhwinfo('mydeviceimaq')

dev =

 AdaptorDllName: 'D:\Work\mydeviceimaq\mydeviceimaq2.dll'
 AdaptorDllVersion: '1.9 (R14SP3)'
 AdaptorName: 'mydeviceimaq'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

To view detailed information about the device, view the structure in the
DeviceInfo field. The DeviceInfo field is an array of structures, where each
structure provides detailed information about a particular device.

dev_info = dev.DeviceInfo

dev_info =

 DefaultFormat: 'RS170'
 DeviceFileSupported: 0
 DeviceName: 'MyDevice'
 DeviceID: 1
 ObjectConstructor: 'videoinput('mydeviceimaq', 1)'
3-15

3 Providing Hardware Information

3-1
 SupportedFormats: {'PAL' 'RS170'}

The following table describes the information in each field, with references
to other sections that provide more information.

Field Description

DefaultFormat Text string that specifies the default format used by the device. You
define the default format when you add the IDeviceFormat object to
the IDeviceInfo object; see “Specifying the Default Format” on
page 3-13.

DeviceFileSupported Boolean value that tells whether the device supports device
configuration files (also known as camera files). You use the
setDeviceFileSupport() member function of the IDeviceInfo object
to set this value; see “Configuring Device Configuration File (Camera
File) Support” on page 3-13.

DeviceName Text string that identifies a particular device. You define this value
when you create the IDeviceInfo object; see “Storing Device
Information” on page 3-11.

DeviceID Numeric value that uniquely identifies a particular device. You
define this value when you create the IDeviceInfo object; see
“Storing Device Information” on page 3-11.

ObjectConstructor Text string that contains the videoinput function syntax required to
create an object instance for this device. The toolbox engine creates
this string.

SupportedFormats Cell array of strings that identifies the formats this device supports.
You define this value when you create the IDeviceFormat objects
associated with a particular device; see “Storing Format Information”
on page 3-12.
6

Defining Classes to Hold Device-Specific Information
Defining Classes to Hold Device-Specific Information
You might want to store more information about a device or format than the
IDeviceInfo and IDeviceFormat objects allow. One way to do this is to define
a new class that contains this additional information. Then, in your adaptor,
instantiate an object of this class and store it in the adaptor data of the
IDeviceInfo or IDeviceFormat objects. Using adaptor data is a good way to
pass important information around inside your adaptor because the
IDeviceInfo and IDeviceFormat objects are passed to other adaptor functions.

Using adaptor data is a three-step process:

1 Define a class to hold the device or format information. See “Defining a
Device or Format Information Class” for more information.

2 Instantiate an object of this class in your adaptor. Use the constructor you
define for your class.

3 Store the object in the adaptor data of the IDeviceInfo or IDeviceFormat
object. See “Storing Adaptor Data” on page 3-17 for more information.

Defining a Device or Format Information Class
The class that you define to store additional device or format information must
be derived from the IMAQinterface class. Subclassing the IMAQInterface class
ensures that all memory deallocations for these classes are routed through the
toolbox engine.

For an example of such a class, see the DemoDeviceFormat class in the demo
adaptor, defined in the file DemoDeviceFormat.h.

Storing Adaptor Data
To store your device or format class in the adaptor data of an IDeviceInfo or
IDeviceFormat object, use the setAdaptorData() member function of the
object.
3-17

3 Providing Hardware Information

3-1
Note The objects you store in adaptor data are automatically destroyed when
the IDeviceInfo and IDeviceFormat objects are destroyed. Once you store an
object in adaptor data, do not try to destroy the objects yourself.

The demo adaptor provides an example, defining a class to hold additional
format information. This class, named DemoDeviceFormat, stores format
information such as width, height, and color space. The following example,
taken from the demo adaptor, shows how to instantiate an object of this derived
class, assign values to the data members of the class, and then store the object
in the adaptor data of the IDeviceFormat object.

DemoDeviceFormat* rgbFormatInfo = new DemoDeviceFormat();

rgbFormatInfo->setFormatWidth(demo::RGB_FORMAT_WIDTH);
rgbFormatInfo->setFormatHeight(demo::RGB_FORMAT_HEIGHT);
rgbFormatInfo->setFormatNumBands(demo::RGB_FORMAT_BANDS);
rgbFormatInfo->setFormatColorSpace(imaqkit::colorspaces::RGB);

deviceFormat->setAdaptorData(rgbFormatInfo);

Accessing Adaptor Data
To access the adaptor data stored in an IDeviceInfo or IDeviceFormat object,
use the getAdaptorData() member function of the object.

The following example, taken from the demo adaptor, shows how to retrieve the
adaptor data from the IDeviceFormat object. In the example, selectedFormat
is a DemoDeviceFormat object. Note that because the getAdaptorData()
member function returns a handle to the IMAQInterface class, you must cast
the returned object to your defined class.

dynamic_cast<DemoDeviceFormat*>(selectedFormat->getAdaptorData());
8

Unloading Your Adaptor DLL
Unloading Your Adaptor DLL
Every adaptor must include an uninitializeAdaptor() function. The engine
calls this function when a user resets the toolbox, by calling the imaqreset
function, or exits MATLAB.

Your adaptor’s implementation of this function depends upon the requirements
of your hardware. Every adaptor must include the uninitializeAdaptor()
function, even if it is an empty implementation.

Example
As defined by the adaptor kit, the uninitializeAdaptor() function accepts no
arguments and does not return a value. The following example implements an
empty initializeAdaptor() function.

void uninitializeAdaptor()
{

// Perform any cleanup your hardware requires.
}

3-19

3 Providing Hardware Information

3-2
Returning Warnings and Errors to MATLAB
To return error or warning messages from your adaptor to the MATLAB
command line, use the adaptorError() and adaptorWarning() functions.
These functions implement an interface similar to the MATLAB error and
warning functions. Using these functions, you can display a text message at the
MATLAB command line.

You must also include a message ID in your message using the format

<component>[:<component>]:<mnemonic>

where <component> and <mnemonic> are alphanumeric strings (for example,
'MATLAB:divideByZero'). The identifier can be used to enable or disable
display of the identified warning. For more information, type help warning or
help error at the MATLAB command line.

The following example outputs a warning message to the MATLAB command
line.

imaqkit::adaptorWarn("MyDeviceAdaptor:constructor","In
constructor");
0

4

Defining Your Adaptor
Class

This chapter describes how to define your adaptor class and instantiate an object of this class. Every
adaptor must define a class that is a subclass of the adaptor kit IAdaptor abstract class. This
abstract class defines several virtual functions that your adaptor class must implement. This chapter
gets you started with an adaptor class implementation by creating a stub implementation. This stub
implementation will enable you to create a video input object with your adaptor using the
videoinput function. In subsequent chapters, you complete adaptor development by fleshing out the
implementations of these virtual functions.

Overview (p. 4-2) Provides an overview of the user tasks your adaptor
implements in its adaptor class

Summary of IAdaptor Abstract Class
Virtual Functions (p. 4-3)

Lists the pure virtual functions in the IAdaptor abstract
class.

Creating a Stub Implementation of
Your Adaptor Class (p. 4-5)

Provides a step-by-step approach to creating a stub
implementation of your adaptor class

Identifying Video Sources (p. 4-10) Describes how to identify a video source

Instantiating an Adaptor Object
(p. 4-12)

Describes how to create your adaptor class constructor

4 Defining Your Adaptor Class

4-2
Overview
When a user calls the videoinput function to create a video input object, the
toolbox engine calls two of the exported functions in your adaptor:

• getDeviceAttributes()
• createInstance()

(To see a flow-of-control diagram that shows how these functions fit with the
other required exported functions, see “Adaptor Exported Functions: An
Overview” on page 3-2.)

The getDeviceAttributes() function defines which properties of the device
that you want to expose to users. This function is described only briefly in this
chapter (see “Identifying Video Sources” on page 4-10). For complete
information about implementing this exported function, see Chapter 6,
“Defining Device-Specific Properties.”

The toolbox engine calls your adaptor’s createInstance() function to
instantiate an object of the adaptor class. Every adaptor must define a class
that is a subclass of the IAdaptor abstract class, providing implementations of
the pure virtual functions defined in this abstract class.

This chapter describes how to create a stub implementation of your adaptor
class (see page 4-5) and create the constructor and destructor for this class, see
“Instantiating an Adaptor Object” on page 4-12. In Chapter 5, “Acquiring
Image Data” you flesh out the implementation of these functions.

Note Because each instance of your adaptor class is associated with a specific
format selected by the user, most of the information returned by these
functions is static.

Summary of IAdaptor Abstract Class Virtual Functions
Summary of IAdaptor Abstract Class Virtual Functions
The following table lists the pure virtual functions defined by the IAdaptor
abstract class, in alphabetical order.

Pure Virtual Function Description with Declaration

closeDevice() Terminates the connection to a device — see “Suggested Algorithm
for closeDevice()” on page 5-13.

virtual bool closeDevice();

getDriverDescription() Returns a character string identifying the device driver used by
the device — see “Specifying Device Driver Identification
Information” on page 5-34.

virtual const char* getDriverDescription() const;

getDriverVersion() Returns a character string identifying the version number of the
device driver used by the device — see “Specifying Device Driver
Identification Information” on page 5-34.

virtual const char* getDriverVersion() const;

getFrameType() Returns the toolbox-defined frame type used to store the images
provided by the device — see “Specifying Frame Type” on page 5-7.

imaqkit::frametypes::FRAMETYPE getFrameType() const;

getMaxHeight() Returns an integer specifying the maximum vertical resolution
(the number of lines) of the image data — see “Specifying Image
Dimensions” on page 5-5.

virtual int getMaxHeight() const;

getMaxWidth() Returns an integer specifying the maximum horizontal resolution
(in pixels) of the image data — see “Specifying Image Dimensions”
on page 5-5.

virtual int getMaxWidth() const;
4-3

4 Defining Your Adaptor Class

4-4
getNumberOfBands() Returns the number of bands used in the returned image data —
see “Specifying Image Dimensions” on page 5-5.

virtual int getNumberOfBands() const;

openDevice() Opens a connection with the device, preparing it for use — see
“Opening and Closing a Connection with a Device” on page 5-10.

virtual bool openDevice();

startCapture() Starts retrieving frames from the device — see “Starting and
Stopping Image Acquisition” on page 5-15.

virtual bool startCapture();

stopCapture() Stops retrieving frames from the device — see “bool
MyDeviceAdaptor::stopCapture(){” on page 5-18.

virtual bool stopCapture();

Pure Virtual Function Description with Declaration

Creating a Stub Implementation of Your Adaptor Class
Creating a Stub Implementation of Your Adaptor Class
To create a stub implementation of your adaptor class, follow this procedure:

1 Add a C++ header file to the adaptor C++ project. This header file will hold
the definition of your adaptor class. You can give your class any name. This
example uses the following naming convention:

vendor_name + adaptor

For this example, the header file that contains the adaptor class definition
is named MyDeviceAdaptor.h.

2 Copy the following class definition into the header file. This adaptor class
contains all the virtual functions defined by the IAdaptor abstract class.

#include "mwadaptorimaq.h" // required header

class MyDeviceAdaptor : public imaqkit::IAdaptor {

public:

 // Constructor and Destructor
 MyDeviceAdaptor(imaqkit::IEngine* engine,

imaqkit::IDeviceInfo* deviceInfo,
const char* formatName);

 virtual ~MyDeviceAdaptor();

 // Adaptor and Image Information Functions
 virtual const char* getDriverDescription() const;
 virtual const char* getDriverVersion() const;
 virtual int getMaxWidth() const;
 virtual int getMaxHeight() const;
 virtual int getNumberOfBands() const;
 virtual imaqkit::frametypes::FRAMETYPE getFrameType() const;

 // Image Acquisition Functions
 virtual bool openDevice();
 virtual bool closeDevice();
 virtual bool startCapture();
4-5

4 Defining Your Adaptor Class

4-6
 virtual bool stopCapture();

};

3 Add a C++ source file to the adaptor project. You can give the source file any
name. This example names the file mydeviceadaptor.cpp.

4 Copy the following stub implementations of all the adaptor virtual functions
into the C++ source file.

#include "MyDeviceAdaptor.h"
#include "mwadaptorimaq.h"

// Class constructor
MyDeviceAdaptor::MyDeviceAdaptor(imaqkit::IEngine* engine,

imaqkit::IDeviceInfo* deviceInfo,
 const char* formatName):imaqkit::IAdaptor(engine){

}

// Class destructor
MyDeviceAdaptor::~MyDeviceAdaptor(){
}

// Device driver information functions
const char* MyDeviceAdaptor::getDriverDescription() const{

return "MyDevice_Driver";
}
const char* MyDeviceAdaptor::getDriverVersion() const {

return "1.0.0";
}

// Image data information functions
int MyDeviceAdaptor::getMaxWidth() const { return 640;}
int MyDeviceAdaptor::getMaxHeight() const { return 480;}
int MyDeviceAdaptor::getNumberOfBands() const { return 1;}

imaqkit::frametypes::FRAMETYPE MyDeviceAdaptor::getFrameType()
const {

return imaqkit::frametypes::MONO8;
}

Creating a Stub Implementation of Your Adaptor Class
// Image acquisition functions
bool MyDeviceAdaptor::openDevice() {return true;}
bool MyDeviceAdaptor::closeDevice(){return true;}
bool MyDeviceAdaptor::startCapture(){return true;}
bool MyDeviceAdaptor::stopCapture(){return true;}

5 After defining the adaptor class and creating stub implementations of all its
member functions, you must make several edits to the file containing the
exported functions, mydevice_exported_fcns.cpp, that you created in
“Providing Hardware Information” on page 3-1.

6 Add a reference to your adaptor class header file. This is needed because the
createInstance() exported function instantiates an object of this class.

#include "MyDeviceAdaptor.h"

7 Copy the following stub implementations of the getDeviceAttributes()
and createInstance() functions into the exported functions source file,
mydevice_exported_fcns.cpp. The getDeviceAttributes() function
defines a video source. This is required to enable creation of a video input
object. See “Identifying Video Sources” on page 4-10 for more information.

void getDeviceAttributes(const imaqkit::IDeviceInfo* deviceInfo,
const char* sourceType,

imaqkit::IPropFactory* devicePropFact,
imaqkit::IVideoSourceInfo* sourceContainer,

imaqkit::ITriggerInfo* hwTriggerInfo){

 // Create a video source
 sourceContainer->addAdaptorSource("MyDeviceSource", 1);
}

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
imaqkit::IDeviceInfo* deviceInfo,

char* sourceType){

imaqkit::IAdaptor* adaptor = new
MyDeviceAdaptor(engine,deviceInfo,sourceType);

 return adaptor;
}

4-7

4 Defining Your Adaptor Class

4-8
8 Export the getDeviceAttributes() and createInstance() functions by
adding them to the adaptor module definition file. The file should look like
this:

LIBRARY mydeviceimaq
EXPORTS
 initializeAdaptor @1

getAvailHW @2
uninitializeAdaptor @3
getDeviceAttributes @4
createInstance @5

9 Build the adaptor DLL. Select the Build Solution option on the Build menu.

10 Start MATLAB.

11 Call the imaqhwinfo function. Note how the adaptor, named mydeviceimaq,
is included in the list of available adaptors returned by imaqhwinfo. If you
have not previously registered your adaptor DLL, register your adaptor with
the toolbox — see “Registering an Adaptor with the Toolbox” on page 1-11.
To view more detailed information about your adaptor, call imaqhwinfo
again with this syntax:

dev_info = imaqhwinfo('mydeviceimaq');

12 Create a video input object for the mydeviceimaq adaptor, using the
videoinput function.

Note While you can create a video input object with your adaptor, you cannot
use it to acquire video from a device. You must implement the adaptor class
acquisition functions to do that. See “Acquiring Image Data” on page 5-1 for
more information.

vid = videoinput('mydeviceimaq',1)

Summary of Video Input Object Using 'MyDevice'.

 Acquisition Source(s): MyDeviceSource is available.

 Acquisition Parameters: 'MyDeviceSource' is the current selected source.
10 frames per trigger using the selected source.

Creating a Stub Implementation of Your Adaptor Class
 '640x480' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.

0 frames available for GETDATA.
4-9

4 Defining Your Adaptor Class

4-1
Identifying Video Sources
The toolbox defines a video source as one or more hardware inputs that are
treated as a single entity. For example, an image acquisition device might
support an RGB source that is made up of three physical connections. The
toolbox would treat the three connections as a single video source. Read the
documentation that came with your device to determine the video sources it
supports.

When a user creates a video input object, the toolbox engine automatically
creates a video source object for each source supported by an adaptor. The
Source property of the video input object lists the available video sources. The
video source object that is used to acquire data is called the currently selected
video source. By default, the toolbox engine uses the first video source you
define as the selected source, but users can switch the selected source by
setting the value of the video input object’s SelectedSourceName property.

Suggested Algorithm
Your adaptor’s getDeviceAttributes() function must define all the properties
and sources of video data you want to make available to users. This section only
covers defining video sources, which means determining the text labels used to
identify the available video sources. For information about making device
properties available to users, see Chapter 6, “Defining Device-Specific
Properties.”

Note Every adaptor must specify at least one video source; otherwise, you
cannot create a video input object if a video source has not been specified.

You use the addAdaptorSource() member function of the IVideoSourceInfo
object that the toolbox engine passes to your adaptor’s getDeviceAttributes()
function to define a video source. You specify the following two arguments:

• Name you want to assign to the source

• ID you want to assign to the source

The name is visible to users. Choose a name that clearly identifies the source.
If the device vendor assigns names to the sources, you can use the same names.
0

Identifying Video Sources
For example, Matrox some devices identify video sources by the labels ch0, ch1,
etc.

Because the ID is not exposed to users, you can specify any convenient value.
For example, if the device’s SDK uses numerical identifiers to indicate a video
source, use these values for your source IDs.

For example, this code specifies a video source.

sourceContainer->addAdaptorSource("MyDeviceSource",1)

You can use IVideoSourceInfo member functions to perform many tasks,
such as determining the currently selected source. For more information about
this class, see the Image Acquisition Toolbox Adaptor Kit API Reference
documentation.
4-11

4 Defining Your Adaptor Class

4-1
Instantiating an Adaptor Object
Every adaptor must include a createInstance() function. The engine calls
this function to instantiate an object of your adaptor’s class. This section
includes the following topics:

• “Suggested Algorithm” on page 4-12

• “Implementing Your Adaptor Class Constructor” on page 4-13

• “Implementing Your Adaptor Class Destructor” on page 4-14

Suggested Algorithm
The algorithm for the createInstance() function is simple: call the adaptor
class constructor to instantiate an object of an adaptor class and return a
handle to the object. The engine passes these arguments to your adaptor’s
createInstance() function. The createInstance() function accepts three
arguments:

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
imaqkit::DeviceInfo* deviceInfo,

const char* FormatName)

The following table describes these arguments. Your adaptor’s
createInstance() function must return a handle to an IAdaptor object.

Argument Purpose

engine Handle to an IEngine object that enables your
adaptor to communicate with the engine.

deviceInfo Handle to an IDeviceInfo object that represents the
characteristics of a particular device. This object will
be one of the IDeviceInfo objects you created in your
getAvailHW() function.

formatName A text string that specifies the name of a video format
supported by the device or the full path of a device
configuration file. If this specifies a format, it must be
one of the formats represented by the IDeviceFormat
objects you created in your getAvailHW() function.
2

Instantiating an Adaptor Object
Implementing Your Adaptor Class Constructor
Because you write the code that calls your adaptor class constructor, you can
define the arguments accepted by your adaptor class constructor. At a
minimum, adaptor constructors must accept a handle to an IEngine object that
represents the connection between the engine and your adaptor. This is defined
by the IAdaptor superclass. Your adaptor uses this handle to access engine
functions for packaging image frames and returning them to the engine.

In addition to this required argument, many adaptors also accept two other
arguments

• Handle to an IDeviceInfo object that specifies the device to which you want
to connect

• Text string specifying the desired acquisition source format or the full path
to a device configuration file (also known as a camera file)

These are the same arguments passed to your adaptor’s createInstance()
function.

Suggested Algorithm
The requirements of your image acquisition device will determine what your
class constructor must do. Class constructors typically perform tasks that only
need to be performed once by the class, such as

• Setting up listeners for all device-specific properties. Listeners notify the
class when a user changes the value of a device-specific property. See
“Setting Up Property Listeners” on page 6-11.

• Creating a critical section object. Your adaptor will use the critical section to
protect data members that might be accessed from multiple threads. See
“Using Critical Sections” on page 5-31.

Note Your class constructor should not perform any device initialization,
because a user might want to create multiple video input objects. Device
initialization occurs when a user has requested frames — see “Opening and
Closing a Connection with a Device” on page 5-10.
4-13

4 Defining Your Adaptor Class

4-1
Example
The following example shows a createInstance() function that instantiates
an object of class MyDeviceAdaptor.

imaqkit::IAdaptor* createInstance(imaqkit::IEngine* engine,
imaqkit::IDeviceInfo* deviceInfo,

char* formatName) {

// Instantiate an object of your IAdaptor-derived class

 imaqkit::IAdaptor* adaptor = new
MyDeviceAdaptor(engine,deviceInfo,formatName);

 return adaptor;
}

Implementing Your Adaptor Class Destructor
This destructor is invoked whenever the associated video input object in
MATLAB is deleted.

delete(vid);

A destructor for a class cannot take parameters or return a value. An adaptor
class, as a derived class, must contain a destructor and the destructor must be
declared as virtual.

virtual ~MyAdaptor();

Suggested Algorithm
The design of your adaptor class and the requirements of your image
acquisition device will determine what tasks your class destructor must
perform. Your class must contain a destructor even if it is an empty
implementation. Some examples of tasks a destructor might perform include:

• Stopping the device, if it is currently acquiring frames — see “bool
MyDeviceAdaptor::stopCapture(){” on page 5-18.

• Closing the connection with the device — see “Suggested Algorithm for
closeDevice()” on page 5-13.

• Deleting the critical section object — see “Using Critical Sections” on
page 5-31.
4

Instantiating an Adaptor Object
Example
This example shows a skeletal implementation of a destructor. For a more
complete example, see the demo adaptor class.

MyAdaptor::~MyAdaptor(){

}

4-15

4 Defining Your Adaptor Class

4-1
6

5

Acquiring Image Data

This chapter describes how to implement the adaptor member functions to perform image
acquisition. After completing the tasks outlined in this chapter, you will be able to create a video
input object, start it, and trigger an acquisition.

Overview (p. 5-2) Provides an overview of how your adaptor acquires image
frames.

Specifying the Format of the Image
Data (p. 5-5)

Describes how to specify the format of the acquired image
data

Opening and Closing a Connection
with a Device (p. 5-10)

Describes how to open a connection with a device

Starting and Stopping Image
Acquisition (p. 5-15)

Describes how to start a video input object

Implementing the Acquisition Thread
Function (p. 5-19)

Describes how to implement the main image acquisition
function

Supporting ROIs (p. 5-25) Describes how to support the specification of a
region-of-interest (ROI) in software and in hardware

Supporting Hardware Triggers
(p. 5-28)

Describes how to support hardware triggers

Using Critical Sections (p. 5-31) Describes how to create and use critical section objects

Specifying Device Driver Identification
Information (p. 5-34)

Describes how to provide device driver information

5 Acquiring Image Data

5-2
Overview
After completing chapters 3 and 4, you can see your adaptor included in the list
of adaptors returned by imaqhwinfo and you can create a video input object
using the videoinput function. Now it’s time to acquire data from your device.
In this chapter, you flesh out the stub implementations of the adaptor class
virtual functions that work together to acquire data.

User Scenario
The following example shows how a toolbox user initiates the acquisition of
image frames. The example calls the videoinput function to create a video
input object and then calls the start function to start the object. Note in the
summary that ten image frames are acquired.

vid = videoinput('winvideo');

start(vid);

vid

Summary of Video Input Object Using 'IBM PC Camera'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 10 frames per trigger using the selected source.
 'RGB555_128x96' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 10 frames acquired since starting.
 10 frames available for GETDATA.

Triggering
In the previous example, the start function opens the connection with the
device but does not actually cause the acquisition of image data. The toolbox
uses triggers to control image acquisition. By default, video input objects are
configured with an immediate trigger so, in the example, when you start the
object, an immediate trigger fires.

Overview
The toolbox also supports two other types of triggers: manual and hardware.
With a manual trigger, after starting a video input object, you must call the
trigger function to acquire data. With hardware triggers, you start the object
and it waits until it receives a signal from an external device to start acquiring
data.

The toolbox handles immediate and manual triggering automatically; you do
not have to include any special processing in your adaptor. Supporting
hardware triggers, requires some adaptor development work. For more
information, see “Supporting Hardware Triggers” on page 5-28.

Overview of Virtual Functions Used to Acquire Data
The pure virtual functions in your adaptor class that you must implement work
together to acquire data. However, the four main steps are:

1 Specify the format of the video data in the getMaxHeight(), getMaxWidth(),
getNumberOfBands(), and getFrameType() functions — see “Specifying the
Format of the Image Data” on page 5-5.

2 Open a connection with your device in the openDevice() function — see
“Opening and Closing a Connection with a Device” on page 5-10.

3 Start acquiring data in the startCapture() function — see “Starting and
Stopping Image Acquisition” on page 5-15.

4 Stop acquiring data in the stopCapture() function — see “Starting and
Stopping Image Acquisition” on page 5-15.

5 Close the connection with the device in the closeDevice() function — see
“Opening and Closing a Connection with a Device” on page 5-10.

The following diagram shows this flow of control in graphical form. This
diagram picks up where the diagram in Chapter 3 ends, after the object has
been created — see “Overview” on page 3-2.

Note The diagrams do not show the calls your adaptor makes to the image
acquisition device’s SDK because these calls vary with each device’s SDK.
5-3

5 Acquiring Image Data

5-4
Flow of Control among the Adaptor Acquisition Functions

MATLAB AdaptorEngine

start(vid) Make sure device is not
already logging.

open()

Start the
acquisition.

Engine enters loop,
buffering frames it
receives from the
adaptor.

Get a Frame object from engine.

Send message to
thread to begin
capturing frames.

receiveFrame()

startCapture()

Return handle to Frame object.

Loop, acquiring
frames, until
acquisition is
complete.

Fill frame with data and return
frame to engine.

makeFrame()

 Start new thread
of execution.

openDevice()

Specifying the Format of the Image Data
Specifying the Format of the Image Data
Before you can acquire data from your device, you must tell the engine the
format of the data it can expect to receive from your device. Without this
information, the engine does not know how to interpret the data. For example,
the engine needs to know the size of the bytes used to store image data, the
length of each line and the total number of lines in each image frame, and the
number of planes, or bands, in each image frame. (e.g. RGB data has three
bands). The following figure illustrates this information.

In some cases, this format information is determined by external standards,
such as the RS-170/NTSC standard. In other cases, device vendors define many
different formats, described in the documentation that comes with the device.
Adaptor writers decide which of these supported formats they want to make
available to users of their adaptor in their getAvailHW() function, described in
“Storing Format Information” on page 3-12.

This section describes how you specify format information in your adaptor after
using the adaptor class virtual functions.

• “Specifying Image Dimensions” on page 5-5

• “Specifying Frame Type” on page 5-7

Specifying Image Dimensions
You specify the dimensions of the image data a device outputs using the
following virtual functions.

• getMaxHeight() — Returns an integer that specifies the maximum height of
the image data.

Height

Band 3

Band 1

Band 2

Width
5-5

5 Acquiring Image Data

5-6
• getMaxWidth() — Returns an integer that specifies the maximum width of
the image data.

• getNumberOfBands() — Returns an integer that specifies the number of
dimensions in the data. For example, RGB formats use three bands.

The engine calls these functions in your adaptor to get the resolution
information that it displays in the VideoResolution property of the video input
object.

vid = videoinput('mydeviceimaq');

get(vid,'VideoResolution')

ans =

640 480

Your adaptor also call these functions when it creates the IAdaptorFrame
object to receive image data. See “Implementing the Acquisition Thread
Function” on page 5-19 for more information.

Suggested Algorithm
The getMaxHeight(), getMaxWidth(), and getNumberOfBands() functions in
an adaptor typically perform the following processing:

1 Determine the format specified by the user when they created the video
input object. The engine passes this information as an argument to your
adaptor’s createInstance() function.

2 Based on the format chosen, return the appropriate values of the height,
width, or number of bands. Your adaptor can accomplish this in many ways.
One way, illustrated by the demo adaptor, is to determine these values in
your getAvailHW() function and store the information in application data in
the IDeviceFormat object — see “Defining Classes to Hold Device-Specific
Information” on page 3-17. Then, the getMaxHeight(), getMaxWidth(), and
getNumberOfBands() functions can retrieve this application data and read
these values.

Specifying the Format of the Image Data
Example
The following implementations of the getMaxHeight() and getMaxWidth()
functions determine the value based on the format specified by the user. The
number of bands depends on whether the format is color or monochrome. For
color formats, such as RGB and YUV, the number of bands is always 3. For
monochrome (black and white) formats, the number of bands is always 1. The
Image Acquisition Toolbox only supports image data with 1 or 3 bands.

Replace the stub implementations in the example adaptor with the following
code C++ file, mydevice.cpp, created in Chapter 3. The values are appropriate
for the format names specified in the example in “Specifying Device and
Format Information” on page 3-8.

int MyDeviceAdaptor::getMaxHeight() const{
if(strcmp(_formatName,"RS170"){

return 480;
} else {

return 576;
}

int MyDeviceAdaptor::getMaxWidth() const {
if(strcmp(_formatName,"RS170"){

return 640;
} else {

return 768;
}

}

int MyDeviceAdaptor::getNumberOfBands() const {

return 1;
}

Specifying Frame Type
In addition to the image frame dimensions, you must provide the engine with
information about the byte layout of the image data. Byte layout includes the
number of bits used to represent pixel values, whether the data is signed or
unsigned, the endianness of the data, and whether the device sends the bottom
row first.
5-7

5 Acquiring Image Data

5-8
To specify this information, you must select one of the FRAMETYPE enumerations
defined by the adaptor kit. The adaptor kit defines enumerations for many
different frame types to represent the wide variety of formats supported by
devices. For example, if your device is a monochrome (black and white) device
that returns 8-bit data, you might choose the MONO8 frame type. If your device
is a color device that returns 24-bit data, you might choose the RGB24 frame
type. The following table summarizes the frame types that are available. To
choose a specific format, view the list in the Image Acquisition Toolbox Adaptor
Kit API Reference documentation or open the AdaptorFrameTypes.h file.

Suggested Algorithm
Your adaptor’s getFrameType() function must return the appropriate frame
type that describes the data returned by your device for the specified format.

Format Frame Types

Monochrome 8-, 10-, 12-, and 16-bit formats; both little-endian and
big-endian; in regular and flip formats. (In flip
formats, the device delivers the bottom line first.)

Signed 16- and 32-bit formats; both little-endian and
big-endian; in regular and flip formats.

Floating-point and double formats; both little-endian
and big-endian formats; in regular and flip formats.

Color 8-, 24-, 32-, and 48-bit RGB formats; both
little-endian and big-endian; regular and flip; packed
and planar (see “Understanding Packed and Planar
Formats” on page 5-9).

Frame types that specify the order of the bytes of
color data (RGB or GBR) and specify where the blank
byte is located (XRGB or XGBR).

Formats that represent colors in 4-bits (4444), 5-bits
(555), 5- or 6-bits (565), or 10-bits (101010).

Formats that use the YUV color space.

Specifying the Format of the Image Data
If your device supports multiple color formats, you do not need to expose all the
formats to toolbox users. You can simply provide one color format and handle
the low-level details in your adaptor with FRAMETYPE.

Example
The following example shows a skeletal implementation of the getFrameType()
function. An actual implementation might select the frame type based on the
format the user selected.

virtual imaqkit::frametypes::FRAMETYPE getFrameType() const {

return imaqkit::frametypes::FRAMETYPE:MONO8;
}

Understanding Packed and Planar Formats
The adaptor kit IAdaptorFrame class defines many FRAMETYPE enumerations
that cover the many possible types of image data devices can return. For
example, some devices can return color images in packed or nonpacked (planar)
formats. These formats describe how the bytes of red, green, and blue data are
arranged in memory. In packed formats, the red, green, and blue triplets are
grouped together. In nonpacked formats, all the red data is stored together,
followed by all the green data, followed by all the blue data. The following
figure illustrates this distinction.

Packed and Planar Formats

To get more information about video formats, go to the fourcc.org Web site.

Packed Format

Nonpacked (Planar) Format

. . .

R R R

GRRR GG

B B BG G G

BB B
5-9

5 Acquiring Image Data

5-1
Opening and Closing a Connection with a Device
Adaptors typically open a connection with the device in their openDevice()
function and close the connection in their closeDevice() function. For most
devices, opening a connection to the device reserves it for exclusive use. Closing
the device releases the device.

Note The toolbox engine actually calls the IAdaptor class open() member
function to open a connection with a device and the close() function to close a
connection with a device. These function then call your adaptor’s
openDevice() and closeDevice() functions. If your adaptor needs to open or
close a device, use the open() and close() functions, rather than calling
openDevice() or closeDevice() directly.

Suggested Algorithm for openDevice()
The openDevice() function typically performs the following tasks.

1 Test whether the device is already open by calling the IAdaptor class
isOpen() function. If the device is already open, your openDevice() function
should return true. If the device is not already open, your openDevice()
function should establish a connection to the device using device SDK calls.

2 Start the acquisition thread. See “Starting an Acquisition Thread” on
page 5-11 for more information.

Note Starting a separate thread is only required if your adaptor uses a
thread-based design. Adaptors can also use asynchronous interrupts
(callbacks) to acquire frames, if the device supports this. In this scenario,
adaptors receive notification asynchronously when data is available. For
information about using this method, refer to the documentation for your
device’s SDK.
0

Opening and Closing a Connection with a Device
Starting an Acquisition Thread
To start an acquisition thread, use the Windows CreateThread() function. The
CreateThread() function creates a thread that executes within the virtual
address space of the calling process.

The CreateThread() function accepts these parameters.

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

For an adaptor, the following table lists the parameters you must set. For
complete information about creating a thread, see the documentation at the
Microsoft Developer Network Web site (msdn.microsoft.com).

After you call the CreateThread() function, applications typically call the
PostThreadMessage() function to send a message to the new thread. This
causes the system to create a message queue for the thread. Enter a loop to
wait until the thread acknowledges the message was received to ensure that
the thread queue has been created. Your adaptor terminates the thread in your

Parameter Description

lpStartAddress Address of the acquisition thread procedure.
Specify the name of the thread procedure
declared in your adaptor class header file. See
“Implementing the Acquisition Thread
Function” on page 5-19.

lpParameter Pointer to the object itself, i.e., the this
pointer.

lpThreadId Address of a variable in which the
CreateThread() function returns the ID
assigned to the newly created thread
5-11

5 Acquiring Image Data

5-1
adaptor’s closeDevice() function — see “Suggested Algorithm for
closeDevice()” on page 5-13.

Example: Opening a Connection
This example shows a skeletal implementation of an openDevice() function.

1 Replace the stub implementation of the openDevice() function in the
MyDevice adaptor with this code.

bool MyDeviceAdaptor::openDevice()
{
 // If device is already open, return true.
 if (isOpen())
 return true;

// Create the image acquistion thread.
_acquireThread = CreateThread(NULL,

0,
acquireThread,

this,
0,

&_acquireThreadID);
 if (_acquireThread == NULL) {
 closeDevice();
 return false;
 }

 // Wait for thread to create message queue.
 while(PostThreadMessage(_acquireThreadID,WM_USER+1,0,0) == 0)
 Sleep(1);

 return true;
}

2 To be able to compile and link your adaptor, you must create a stub
implementation of your acquireThread() function and add it to your
adaptor. You can fill in the complete implementation later — see
“Implementing the Acquisition Thread Function” on page 5-19.
2

Opening and Closing a Connection with a Device
DWORD WINAPI MyDeviceAdaptor::acquireThread(void* param) {

MSG msg;
while (GetMessage(&msg,NULL,0,0) > 0) {

switch (msg.message) {
case WM_USER:

// The frame acquisition loop code goes here.
adaptor_warn('in acquire thread function\n');

} // end switch
} // end while

return 0;
} // end acquireThread

3 Add declarations of the acquireThread() function, the acquireThread
variable, and the acquireThreadID variable as private data members of
your adaptor class header file. In this example, MyDeviceAdaptor.h.

private:
// Declaration of acquisition thread function
static DWORD WINAPI acquireThread(void* param);

// Thread variable
HANDLE _acquireThread;

// Thread ID returned by Windows.
DWORD _acquireThreadID;

4 Compile and link your adaptor. You should be able to create a video input
object. When you call the start function, verify that your adaptor
successfully created the acquisition thread.

Suggested Algorithm for closeDevice()
The closeDevice() function typically performs the following tasks.

1 Test whether the device is already closed. If it is, exit.
5-13

5 Acquiring Image Data

5-1
2 Post a message to the acquisition thread to quit and wait until it returns
before exiting, for adaptors with thread-based designs. For more
information about posting a message to the thread, see “Sending a Message
to the Acquisition Thread” on page 5-16.

3 Close the handle associated with the acquisition thread and reset the thread
handle variable to NULL.

Example: Closing the Connection with a Device
The example shows a skeletal implementation of the closeDevice() function.

bool MyDeviceAdaptor::closeDevice(){

// If the device is not open, return.
 if (!isOpen())
 return true;

 // Terminate and close the acquisition thread.
 if (_acquireThread) {

// Send WM_QUIT message to thread.
PostThreadMessage(_acquireThreadID, WM_QUIT, 0, 0);

// Give the thread a chance to finish.
WaitForSingleObject(_acquireThread, 10000);

// Close thread handle.
CloseHandle(_acquireThread);

 _acquireThread = NULL;
 }

return true;
}

4

Starting and Stopping Image Acquisition
Starting and Stopping Image Acquisition
Once openDevice() returns successfully, the engine calls your adaptor’s
startCapture() function to start acquiring data.

The engine calls your adaptor’s stopCapture() function when a user calls the
stop or closepreview function on a video input object, or when the specified
number of frames has been acquired and the acquisition is complete. For
example,

vid = videoinput('winvideo',1);
set(vid,'FramesPerTrigger',1000); //
start(vid);
stop(vid);

Suggested Algorithm for startCapture()
The startCapture() function typically performs the following tasks.

1 Check whether an acquisition is already occurring, using the IAdaptor
member function isAcquiring(). If it is, exit.

2 Send a message to the acquisition thread, using the Windows
PostThreadMessage() function, telling it to begin acquiring image frames
from the device. See “Sending a Message to the Acquisition Thread” on
page 5-16 for more information.

Note Sending a start message to the acquisition thread is only required if
your adaptor uses a thread-based design. Adaptors can also use asynchronous
interrupts (callbacks) to acquire frames, if the device supports this. Refer to
the documentation that came with your device’s SDK for more information.

The startCapture() function also typically makes sure that the latest image
acquisition object properties are used (see “Setting Up Property Listeners” on
page 6-11), and configure hardware triggers, if supported and set (see
“Supporting Hardware Triggers” on page 5-28).
5-15

5 Acquiring Image Data

5-1
Sending a Message to the Acquisition Thread
To send a message to a thread, use the Windows PostThreadMessage()
function. The adaptor’s acquisition thread function uses the Windows
GetMessage() function to receive these messages — see “Example: Opening a
Connection” on page 5-12.

The PostThreadMessage() function accepts these parameters:

BOOL PostThreadMessage(DWORD idThread,
 UINT Msg,
 WPARAM wParam,
 LPARAM lParam
);

The following table describes how to set these parameters for an adaptor. For
more information about sending thread messages, see the documentation at
the Microsoft Developer Network Web site (msdn.microsoft.com).

Parameter Description

idThread Identifier of the thread to which the message is to be
posted, returned by CreateThread().

Msg Message to be posted. Microsoft defines a range of values
for user messages, beginning with the value WM_USER.

wParam Additional message-specific information

lParam Additional message-specific information
6

Starting and Stopping Image Acquisition
Example: Initiating Acquisition
This example illustrates a simple startCapture() function. This function
takes no arguments and returns a Boolean value indicating whether the video
input object is in start state.

1 Replace the stub implementation in the MyDeviceAdaptor.cpp file with this
code and then rebuild your adaptor.

bool MyDeviceAdaptor::startCapture(){
// Check if device is already acquiring frames.

 if (! isAcquiring())
 return false;

// Send start message to acquisition thread
 PostThreadMessage(_acquireThreadID, WM_USER, 0, 0);

return true;
}

2 Start MATLAB and run your adaptor to verify that your acquisition thread
gets the start message from startCapture().

Suggested Algorithm for stopCapture()
The stopcapture() function typically performs these tasks.

1 Checks whether the adaptor is already stopped by calling the
isAcquiring() function. If the device is not currently acquiring data, return
true.

2 Stops the frame acquisition loop and stops the device, if necessary

Note It is important not to exit the stopCapture() function while the
acquisition thread function is still acquiring frames. One way to do this is to
try to acquire a critical section. When you are able to acquire the critical
section, you can be sure that the frame acquisition loop has ended, giving up
its critical section.
5-17

5 Acquiring Image Data

5-1
Example
The example shows the stopCapture() function from the demo adaptor. The
demo adaptor provides one example of how to stop the frame acquisition loop.
The adaptor defines a flag variable that it checks each time it enters the frame
acquisition loop. To break out of the frame acquisition loop, set this flag
variable to false. See the demo adaptor for more details.

This example illustrates a simple stopCapture() function. This function takes
no arguments and returns a Boolean value indicating whether the video input
object is in stopped state.

1 Replace the stub implementation in the MyDeviceAdaptor.cpp file with this
code and then rebuild your adaptor.

bool MyDeviceAdaptor::stopCapture(){

// If the device is not acquiring data, return.
if (!isAcquiring())

return true;

//**
// Insert calls to your device's SDK to stop the device, if
// necessary.
//**

return true;
}

8

Implementing the Acquisition Thread Function
Implementing the Acquisition Thread Function
This section describes how to implement your adaptor’s acquisition thread
function. In a threaded adaptor design, the acquisition thread function
performs the actual acquisition of frames from the device. When you create the
thread (“Opening and Closing a Connection with a Device” on page 5-10), you
specify the name of this acquisition thread function as the starting address for
the new thread.

User Scenario
The toolbox engine invokes the acquisition thread function indirectly when a
user calls the start, getsnapshot, or preview function. Once called, the
acquisition thread function acquires frames until the specified number of
frames has been acquired or the user calls the stop function.

Suggested Algorithm

Note The design of the acquisition thread function can vary significantly
between various adaptors, depending on the requirements of the device’s SDK.
This section does not describe device-dependent implementation details but
rather highlights required tasks that are common to all implementations.

At its highest level, in a threaded design, an acquisition thread function
typically contains two loops:

• “Thread Message Loop” on page 5-19

• “Frame Acquisition Loop” on page 5-20

Thread Message Loop
The thread message loop is the main processing loop in the acquisition thread
function. When the thread is created, the function enters the thread message
loop, waiting for the message to start acquiring frames. Your adaptor’s
startCapture() function sends the message to the acquisition thread, telling
it to start acquiring frames. This example uses the WM_USER message to
indicate this state. See “Sending a Message to the Acquisition Thread” on
page 5-16 for more information.
5-19

5 Acquiring Image Data

5-2
When it receives the appropriate message, the acquisition thread function
enters the frame acquisition loop. The following figure illustrates this
interaction between your adaptor functions and the acquisition thread. For
information about the frame acquisition loop, see “Frame Acquisition Loop” on
page 5-20.

Interaction of Adaptor Functions and Acquisition Thread

Frame Acquisition Loop
The frame acquisition loop is where your adaptor acquires frames from the
device and sends them to the engine. This process involves the following steps:

1 Check whether the specified number of frames has been acquired. The frame
acquisition loop acquires frames from the device until the specified number
of frames has been acquired. Use the IAdaptor member function
isAcquisitionNotComplete() to determine if more frames are needed.

openDevice()

Send message to
thread to begin
capturing frames.

startCapture()

Start acquisition
thread.

Enter frame
acquisition loop,
acquiring frames
from device.

closeDevice()
Send message to
terminate frame
acquisition loop.

Acquisition thread

Enter thread
message loop,
waiting for
start message.

Package image
frames and send
them to the engine.

Start message
received.
0

Implementing the Acquisition Thread Function
2 If your adaptor supports hardware triggers, you would check whether a
hardware trigger is configured here — “Supporting Hardware Triggers” on
page 5-28.

3 Grab a frame from the device. This code is completely dependent on your
device SDK’s API. With many device SDKs, you allocate a buffer and the
device fills it with image data. See your device’s API documentation to learn
how to get frames from your device.

4 Check whether you need to send the acquired frame to the engine, using the
IAdaptor member function isSendFrame(). This is how the toolbox
implements the FrameGrabInterval property, where users can specify that
they only want to acquire every other frame, for example.

If you need to send a frame to the engine, package the frame in an
IAdaptorFrame object; otherwise, skip to step 5.

a Create a frame object, using the IEngine object makeFrame() member
function. You must specify the image frame dimensions and frame type
when you create the frame object.

b Put the acquired image data into the frame object, using the
IAdaptorFrame object setImage() member function. You specify a
pointer to the buffer that contains the image data, the frame width and
height and any offsets from the upper left corner of the image.

Note For information about specifying frame width, height, and offset with
ROIs, see “Supporting ROIs” on page 5-25.

c Log the time of the acquisition in the frame object, using the
IAdaptorFrame member function setTime(). Device SDKs sometimes
provide access to time stamp information, but you can also use the
adaptor kit getCurrentTime() function.

d Send the packaged frame to the engine, using the IEngine member
function receiveFrame().

5 Increment the frame count using the IAdaptor member function
incrementFrameCount(). Whether you need to send a frame or not, you
must always increment the frame count whenever you acquire a frame.
5-21

5 Acquiring Image Data

5-2
6 Return to the top of the frame acquisition loop.

The following figure illustrates the frame acquisition loop.

A Possible Algorithm for the Frame Acquisition Loop

Example
The following is a declaration of an acquisition thread function. You can give
your acquisition thread procedure any name, such as acquireThread().

DWORD WINAPI acquireThread(void* ThreadParam);

Your thread function must accept a single parameter, which is defined as a
pointer to the object itself, i.e., the this pointer. The thread function returns a
value that indicates success or failure. For more information, see the
documentation at the Microsoft Developer Network Web site
(msdn.microsoft.com).

Is acquisition
complete?

 Re-enter thread
message loop.

No

Get frame from
device.

Increment frame
count.

 Yes

Send frame to
engine?

No

 Yes Package Frame and
send it to engine
2

Implementing the Acquisition Thread Function
The following is an acquisition thread function that you can use with the
example MyDeviceAdaptor. Replace the skeletal implementation you used in
“Starting an Acquisition Thread” on page 5-11 with this code.

DWORD WINAPI MyDeviceAdaptor::acquireThread(void* param) {

MyDeviceAdaptor* adaptor = reinterpret_cast<MyDeviceAdaptor*>(param);

MSG msg;
while (GetMessage(&msg,NULL,0,0) > 0) {

switch (msg.message) {
case WM_USER:

// Check if a frame needs to be acquired.
while(adaptor->isAcquisitionNotComplete()) {

// Insert Device-specific code here to acquire frames
// into a buffer.

if (adaptor->isSendFrame()) {

// Get frame type & dimensions.
imaqkit::frametypes::FRAMETYPE frameType =

adaptor->getFrameType();
int imWidth = adaptor->getMaxWidth();
int imHeight = adaptor->getMaxHeight();

// Create a frame object.
imaqkit::IAdaptorFrame* frame =

adaptor->getEngine()->makeFrame(frameType,
imWidth,

imHeight);

// Copy data from buffer into frame object.
frame->setImage(imBuffer,

imWidth,
imHeight,

0, // X Offset from origin
0); // Y Offset from origin

// Set image's timestamp.
frame->setTime(imaqkit::getCurrentTime());

// Send frame object to engine.
adaptor->getEngine()->receiveFrame(frame);

} // if isSendFrame()

// Increment the frame count.
5-23

5 Acquiring Image Data

5-2
adaptor->incrementFrameCount();

} // while(isAcquisitionNotComplete()

break;
} //switch-case WM_USER

} //while message is not WM_QUIT

return 0;
}

4

Supporting ROIs
Supporting ROIs
The toolbox supports the specification of regions of interest (ROIs) in both
software and hardware.

When using a software ROI, a toolbox user sets the dimensions of the ROI in
the ROIPosition property. The device returns the entire image frame. Your
adaptor specifies the ROI dimensions when it create the Frame object to
package up the image data.

For hardware ROI, the user defines the ROI on the device. The device returns
only the data in the specified ROI.

Implementing Software ROI
Users can set the value of the ROIPosition property to specify an ROI. Users
specify the value as a four-element vector in the form:

[Xoffset Yoffset Width Height]

The x- and y-offsets define the position of the ROI in relation to the upper left
corner of the image frame. For more information see the toolbox
documentation.

Suggested Algorithm
To support software ROI, your adaptor must check the value of the
ROIposition property before creating the frame object because you need to
specify the ROI dimensions when you create the frame.

In your frame acquisition loop, insert the following call to the IAdaptor function
getROI(). Then, use the ROI width and height values when you create the
IAdaptorFrame object, rather than the full image height and width returned by
the device.

Note You use the ROI width and height when you create the frame but you
use the full image width and height when you copy the image data from the
buffer into the frame object.
5-25

5 Acquiring Image Data

5-2
Example
The following is a version of the isSendFrame() loop in the acquisition thread
function that checks the ROI. Note that you call the getROI() function to get
the ROI values, and then use the width and height values in the call to
makeFrame() and the offsets from the origin in the call to setImage().

if (adaptor->isSendFrame()) {

// Get ROI information.
int roiOriginX, roiOriginY, roiWidth, roiHeight;
adaptor->getROI(roiOriginX,

roiOriginY,
roiWidth,
roiHeight);

// Get frame type & dimensions
imaqkit::frametypes::FRAMETYPE frameType =

adaptor->getFrameType();
int imWidth = adaptor->getMaxWidth();
int imHeight = adaptor->getMaxHeight();

// Create a frame object
imaqkit::IAdaptorFrame* frame =
adaptor->getEngine()->makeFrame(frameType,

roiWidth, // ROI width
roiHeight); // ROI height

// Copy data from buffer into frame object
frame->setImage(imBuffer,

imWidth, // Full image width
imHeight, // Full image height

roiOriginX, // ROI origin
roiOriginY); // ROI origin

// Set image's timestamp
frame->setTime(imaqkit::getCurrentTime());
// Send frame object to engine.
adaptor->getEngine()->receiveFrame(frame);

} // if isSendFrame()
6

Supporting ROIs
Implementing Hardware ROI
To implement hardware ROI, you must overload the IAdaptor’s getROI() and
setROI() member functions in your implementation of your adaptor class. By
default, if the IAdaptor object’s getROI() member function is not overloaded,
ROI configurations will be handled in software by imaqkit::IEngine.
5-27

5 Acquiring Image Data

5-2
Supporting Hardware Triggers
The toolbox supports three types of triggers:

• Immediate — Trigger fires when video input object is started.

• Manual — Trigger fires when user calls trigger function.

• Hardware — Trigger fires when externally defined conditions are met

The engine provides automatic support for immediate and manual triggers. If
you want your adaptor to support hardware triggers you must check to see if
users have specified a hardware trigger in your acquisition thread function.
Before you start acquiring frames from your device, insert a call to the
IAdaptor member function useHardwareTrigger() to determine if the frame
acquisition loop should wait for a hardware trigger to fire. If a hardware trigger
is configured, insert device SDK calls required to wait for trigger.

The following figure illustrates the frame acquisition loop with the test for
hardware trigger.
8

Supporting Hardware Triggers
Main Acquisition Loop with Test for Hardware Trigger

Is acquisition
complete?

 Re-enter thread
message loop.

No

Get frame from
device.

Increment frame
count.

 Yes

Does next frame
require Hardware
Trigger?

No

 Yes
 Wait for
hardware trigger.

Send frame to
engine?

No

 Yes Package Frame and
send it to engine
5-29

5 Acquiring Image Data

5-3
Example
The following is a acquisition thread function that includes a call to check for
hardware trigger.

while(adaptor->isAcquisitionNotComplete()) {

// Check for hardware trigger
if (adaptor->useHardwareTrigger()) {

// Add code here to configure the image
// acquisition device for hardware
// triggering.

}

if (adaptor->isSendFrame()) {

// see acquistion thread

} // if isSendFrame()

// Increment the frame count.
adaptor->incrementFrameCount();

} // while(isAcquisitionNotComplete()

break;
} //switch-case WM_USER

} //while message is not WM_QUIT

return 0;
}

0

Using Critical Sections
Using Critical Sections
This section describes how to use critical sections to protect portions of your
adaptor code. The section describes the adaptor kit’s main critical section class,
ICriticalSection, and the ancillary class, IAutoCriticalSection, that you
use to manage critical sections. Topics covered include

• “Understanding Critical Sections” on page 5-31

• “Example: Using a Critical Section” on page 5-32

Understanding Critical Sections
To prevent sections of code or resources from being accessed simultaneously by
multiple threads, use critical section (ICriticalSecton) objects. The basic
process for using a critical section has three-steps:

1 Create a critical section object, using the adaptor kit
createCriticalSection() function.

2 At the point in your code that you want to protect, enter the critical section
by calling the ICriticalSection::enter() member function.

3 At the end of the code that you want to protect, leave the critical section by
calling the ICriticalSection::leave() member function.

While this process might appear simple, using a ICriticalSection object
directly in this way can expose your adaptor to problems. For example, if an
error occurs in the protected code, the call to the leave() function might never
be executed. Entering a critical section and then never leaving it can cause
unexpected results.

To make working with critical sections easier, the adaptor kit provides a second
class, called IAutoCriticalSection, that can help you manage the critical
sections you define.

You first create an ICriticalSection object and then pass this object to the
createAutoCriticalSection() function when you create the
IAutoCriticalSection object. When you create the object, you automatically
enter the critical section without having to call the enter() function. When the
protected code goes out of scope, the auto critical section automatically leaves
the critical section without your code having to call the leave() function.
5-31

5 Acquiring Image Data

5-3
The auto critical section object ensures that you always exit a critical section.
However, you must also ensure that the auto critical section itself gets deleted.
To do this, the adaptor kit recommends managing the handle to the
IAutoCriticalSection object, returned by createAutoCriticalSection(), as
an auto_ptr using the std::auto_ptr<> template class from the Standard
Template Library. The auto_ptr helps ensure that the IAutoCriticalSection
handle is deleted.

Example: Using a Critical Section
To define a section of code as a critical section, follow this procedure.

1 Create an ICriticalSection object, using the createCriticalSection()
function. Adaptors typically create an ICriticalSection object in their
constructors — see “Implementing Your Adaptor Class Constructor” on
page 4-13.

_mySection = imaqkit::createCriticalSection();

The function returns a handle to an ICriticalSection object. _mySection,
which is declared as a member variable in the adaptor class header file, as
follows.

imaqkit::ICriticalSection* _mySection;

2 At the point in your code that you want to protect, create an
IAutoCriticalSection object. The IAutoCriticalSection class
guarantees that the critical section objects are released when the protected
code goes out of scope, or if an exception occurs. In an adaptor, you typically
want to protect the frame acquisition loop in a critical section. Insert this
code in the acquisition thread function, just before the frame acquisition loop
— see “Implementing the Acquisition Thread Function” on page 5-19.

std::auto_ptr<imaqkit::IAutoCriticalSection>
myAutoSection(imaqkit::createAutoCriticalSection(adaptor->_mySection,
true));

In this code, the variable myAutoSection is a handle to an
IAutoCriticalSection object, that is managed as a Standard Template
Library auto_ptr. The code passes a handle to an ICriticalSection object,
_mySection, as an argument to the createAutoCriticalSection()
function. The second argument to createAutoCriticalSection() specifies
2

Using Critical Sections
that the adaptor should enter the critical section automatically upon
creation of the IAutoCriticalSection.

3 At the end of the code that you want to protect, leave the critical section. In
an adaptor, you want to leave the critical section after the frame acquisition
loop is done. Insert this code just before the acquisition thread function
breaks out of the frame acquisition loop — see “Implementing the
Acquisition Thread Function” on page 5-19.

You can use the IAutoCriticaSection::leave() function but this is not
necessary. The IAutoCriticalSection leaves the critical section
automatically when the code section goes out of scope. You might want to
include explicit calls to the leave() function in your code to help document
the extent of your critical section.

bool MyDeviceAdaptor::stopCapture(){

// If the device is not acquiring data, return.
if (!isAcquiring())

return true;

// Get the critical section.

std::auto_ptr<imaqkit::IAutoCriticalSection>
GrabSection(imaqkit::createAutoCriticalSection(_grabSection,

true));

GrabSection->enter();

//**
// Insert calls to your device's SDK to stop the device, if
// necessary.
//**

// Leave the critical section.

GrabSection->leave();

return true;
}

5-33

5 Acquiring Image Data

5-3
Specifying Device Driver Identification Information
Two of the virtual functions you must implement return identification
information about the device driver used to communicate with your device.
This information can be useful for debugging purposes.

• getDriverDescription() — Returns a text string that identifies the device.

• getDriverVersion() — Returns a text string that specifies the version of the
device driver.

Adaptors typically use an SDK function to query the device to get this
information, if the SDK supports it, or obtain the information from the device
documentation.

User Scenario
The identification text strings returned by getDriverDescription() and
getDriverVersion() are visible to users if they call imaqhwinfo, specifying a
video input object as an argument, as follows.

vid = videoinput('mydeviceimaq');

imaqhwinfo(vid)
ans =

 AdaptorName: 'mydeviceimaq'
 DeviceName: 'MyDevice'
 MaxHeight: 280
 MaxWidth: 120
 TotalSources: 1
 VendorDriverDescription: 'MyDevice_Driver'
 VendorDriverVersion: '1.0.0'

Example
The following example contains skeletal implementations of the
getDriverDescription() and getDriverVersion() functions.

const char* MyDeviceAdaptor::getDriverDescription() const{
return "MyDevice_Driver";

}

4

Specifying Device Driver Identification Information
const char* MyDeviceAdaptor::getDriverVersion() const {
return "1.0.0";

}

5-35

5 Acquiring Image Data

5-3
6

6

Defining Device-Specific
Properties

This chapter describes how to define the properties that toolbox users can use to configure various
attributes of a device. These properties can control aspects of the image acquired, such as brightness,
behavior of the device, such as shutter speed, and other device-specific characteristics.

Overview (p. 6-2) Provides an overview of the process of defining
device-specific properties

Creating Device Properties (p. 6-6) Describes how to create device-specific properties

Defining Hardware Trigger
Configurations (p. 6-10)

Describes how to create hardware trigger configurations

Setting Up Property Listeners (p. 6-11) Describes how to set up listeners to detect when users
have changed the value of a property

6 Defining Device-Specific Properties

6-2
Overview
You define which properties of your image acquisition device you want to
expose to toolbox users. You make this determination by reading the device’s
SDK documentation, determining its capabilities, and deciding which
capabilities toolbox users will be expected to configure. Once you decide to
expose a property, you must define three characteristics of the property:

• Name

• Data type

• Range of valid values (optional)

Adaptor writers typically wait to define properties until after they are able to
acquire data from the device because you need to acquire data to see the effect
of some properties.

User Scenario
The properties that you define for your device appear to users as properties of
the video source object associated with the video input object. The properties of
the video input object, which represent general properties that are common to
all image acquisition devices, are defined by the toolbox.

To view the device-specific properties you define, get a handle to the video
source object and use the get function. To set the value of device-specific
properties you define, get a handle to the video source object and use the set
function. For example, this code creates a video input object, uses the
getselectedsource function to get a handle to the currently selected video
source object, and then views the properties of the video source object.

vid = videoinput('winvideo',1)
src = getselectedsource(vid);
get(vid)
General Settings:

Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:

Overview
 Brightness = -10
 Contrast = 266
 Exposure = 1024
 ExposureMode = auto
 Hue = 0
 Saturation = 340
 Sharpness = 40

Suggested Algorithm
When a user calls the videoinput function, the engine calls the
getDeviceAttributes() function to set up any device-specific properties you
might have defined for the device. The engine passes several arguments to your
adaptor’s getDeviceAttributes() function:

void getDeviceAttributes(const imaqkit::IDeviceInfo* deviceInfo,
const char* acqFormat,

imaqkit::IPropFactory* devicePropFact,
imaqkit::IVideoSourceInfo* sourceContainer,

imaqkit::ITriggerInfo* hwTriggerInfo)

The following table describes these arguments.

Argument Data Type Description

deviceInfo IDeviceInfo object Specifies the image
acquisition device

acqformat Text string Video format or path to device
configuration file

devicePropFact IPropFactory
object

Provides member functions
used to create properties
6-3

6 Defining Device-Specific Properties

6-4
The algorithm for getDeviceAttributes() typically includes these steps:

1 Determine the device the user wants to establish a connection with. The
user specifies the device ID when he creates the video input object.

2 Determine which format the user wants to use with the device. The user
specifies the name of the format (or the path of a camera file) when he
creates the video input object. To get format information, retrieve the
IDeviceFormat object associated with the format from the IDeviceInfo
object.

3 Create a property object appropriate to the data type of the property and
store the property object in the device-specific property container — see
“Creating Device Properties” on page 6-6.

4 Find all trigger configurations supported by the device and store the
information in the ITriggerInfo object — see “Supporting Hardware
Triggers” on page 5-28.

There are several ways to determine this property, source, and trigger
information:

• By querying the device SDK at run-time

• By reading information from an imaging device file (IMDF). If you know the
device information in advance, you can store it in an IMDF file using an
XML-based markup language. This section describes how to read

sourceContainer IVideoSourceInfo
object

Define the video sources
available with this device,
described in “Identifying
Video Sources” on page 4-7

hwTriggerInfo ITriggerInfo
object

Specifies hardware triggers.
The other two trigger types,
immediate and manual, are
handled automatically by the
toolbox.

Argument Data Type Description

Overview
information from an IMDF file. To learn how to create an IMDF file, see
“Storing Adaptor Information in an IMDF File” on page 7-1.

• A mixture of both methods.
6-5

6 Defining Device-Specific Properties

6-6
Creating Device Properties
To define properties for a device, follow this procedure:

1 Create the property using the appropriate IPropFactory member function
for the data type. For example, to create a property of type double, use the
createDoubleProperty() function, specifying the property name and
default value as arguments.

hprop = devicePropFact->createDoubleProperty("Brightness",100)

The IPropFactory class supports functions to create properties of various
data types — see “Selecting the Property Creation Function” on page 6-6.
You can also use the createPropFromIMDF() function to create a property
from an IMDF file. See “Reading Properties from an IMDF File” on page 6-7
for more information.

2 Specify when the property can be modified, if ever, using the
setPropReadOnly() function of the IPropFactory object. Use one of the
following constants (defined in IEngine.h): READONLY_ALWAYS,
READONLY_NEVER, and READONLY_WHILE_RUNNING. For example,

devicePropFact->setPropReadOnly(hProp,
imaqkit::imaqengine::READONLY_WHILE_RUNNING);

3 Add the property to the engine’s device-specific property container, using the
addProperty() method of the IPropFactory object. For example,

devicePropFact->addProperty(hProp);

where hProp is a handle to the property you created in step 1.

Selecting the Property Creation Function
The IPropFactory() object supports functions that you can use to create
properties of various data types, including:

• int
• double
• string

• Enumerated types

Creating Device Properties
For example, use the createDoubleProperty() function to create a property
whose value is of type double.

hprop = devicePropFact->createDoubleProperty("MyDoubleProp",2.5)

For the int and double types, you can also specify properties that have pairs
of values or values within a defined range. For example, this code creates an
integer property with upper and lower bounds.

hprop = devicePropFact->createIntProperty("MyBoundedIntProp",
0,100,50)

To create a property with enumerated values, use createEnumProperty(),
specifying the property name, and one enumeration, for example,

hprop = devicePropFact->createEnumProperty("MyEnum",
"green",1)

You then add additional properties using addEnumValue().

For more information about the IPropFactory class, see the Image Acquisition
Toolbox Adaptor Kit API Reference documentation.

Reading Properties from an IMDF File
As an alternative to using IPropFactory member functions, you can also create
properties by reading property information from an IMDF file using
createPropFromIMDF() function.

This code fragment from the Demo adaptor creates a property from an IMDF
file.

devicePropFact->createPropFromIMDF(demo::SHARPNESS_STR)

For more information about IMDF files, see Chapter 7, “Storing Adaptor
Information in an IMDF File.”

Creating Property Help
You can use IMDF files to define help text for the device-specific properties you
create. For more information, see “Specifying Help in an IMDF File” on
page 7-6.
6-7

6 Defining Device-Specific Properties

6-8
Example
The following example presents a skeletal implementation of a
getDeviceAttributes() function. The intent of this example is to show how to
use adaptor kit objects to specify video sources and properties of various types.

This code fragment does not read source, property, or trigger information from
an IMDF file. For information about this topic, see Chapter 7, “Storing Adaptor
Information in an IMDF File.”

1 Add the following code to the getDeviceAttributes() function in the
adaptor. You created a skeletal version of this function in “Identifying Video
Sources” on page 4-10. This code creates several properties of various types.

void* hProp; // Declare a handle to a property object.

// Create a property of type double with a default value
hProp = devicePropFact->createDoubleProperty("MyDoubleProp",2.5);

// Specify when the property value can be modified.
devicePropFact->setPropReadOnly(hProp,

imaqkit::imaqengine::READONLY_ALWAYS);

// Add the property to the device-specific property container.
devicePropFact->addProperty(hProp);

// Create a bounded int property with maximum and minimum values
hProp = devicePropFact->createIntProperty("MyBoundedIntProp",

0, 100, 50);

// Specify when the property value can be modified.
devicePropFact->setPropReadOnly(hProp,

imaqkit::imaqengine::READONLY_NEVER);

// Add the property to the device-specific property container.
devicePropFact->addProperty(hProp);

// Create an enumerated property
hProp = devicePropFact->createEnumProperty("MyEnumeratedProp",

"green", 1);

// Add additional enumerations
devicePropFact->addEnumValue(hProp, "blue", 2);
devicePropFact->addEnumValue(hProp, "red", 3);

// Specify when the property value can be modified.
 devicePropFact->setPropReadOnly(hProp,

Creating Device Properties
imaqkit::imaqengine::READONLY_WHILE_RUNNING);

 // Add the property to the device-specific property container.
devicePropFact->addProperty(hProp);

2 Compile and link your adaptor to create the DLL.

3 Start MATLAB.

4 Create a video input object for your adaptor.

vid = videoinput('mydevice',1)

5 Get the selected source and view the device-specific properties you created.

src = getselectedsource(vid);
get(vid)
General Settings:

Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 MyDoubleProp = 2.5
MyBoundedIntProp = 100
MyEnumeratedProp = green
6-9

6 Defining Device-Specific Properties

6-1
Defining Hardware Trigger Configurations
To define hardware trigger configurations, use the addConfiguration()
function of the ITriggerInfo object. The engine passes a handle to an
ITriggerInfo object to your adaptor’s getDeviceAttributes() function.

When you create a hardware trigger configuration, you specify:

• Name of the source of the trigger

• ID of the trigger source

• Name of the condition that triggers an acquisition

• ID of the trigger condition

For example,

hwTriggerInfo->addConfiguration("MyTriggerSource", 1,
"MyTriggerCondition",2)
0

Setting Up Property Listeners
Setting Up Property Listeners
This section describes how to setup property listeners so that your adaptor can
get notification when the value of a device-specific property changes. Adaptor
writers typically set up property listeners in their adaptor class constructor —
see “Implementing Your Adaptor Class Constructor” on page 4-13.

User Scenario
When a user changes the value of a video input object or a video source object
property, using the set function, the engine changes the value of the property
in its property containers. The engine maintains two property containers. One
container, called the engine property container, stores the properties of the
video input object. The other container, called the adaptor property container,
stores the device-specific properties of the associated video source object. The
properties that you can define in your adaptor appear as properties of the video
source object.

When the value of a device-specific property changes, adaptors typically need
to respond. For example, if a user changes the value of the Brightness
property, your adaptor must communicate with the device to configure the new
value.

Receiving Notification of Property Value Changes
To receive notification when the value of a property changes, your adaptor
must associate a listener object with a particular property. When the value of
that property changes, the engine calls the associated listener object. You
define what the listener does in response to this notification, such as changing
the actual configuration of the device.

To setup property listeners, follow this procedure. The sections that follow
provide more detail about each step.

1 Define a property listener class, deriving it from the IPropPostSetListener
abstract class — see “Defining a Listener Class” on page 6-12.

2 Implement the notify() virtual function in your listener class — see
“Creating the notify() Function” on page 6-13.
6-11

6 Defining Device-Specific Properties

6-1
3 Associate an object of your listener class with a property — see “Associating
a Listener with a Property Container” on page 6-15.

Defining a Listener Class
To receive notification when a property value changes, you must define a
property listener class that is derived from the abstract class
IPropPostSetListener. (The name of the class includes the word Post because
listeners are notified after the property value stored in the container is
updated, i.e., post-set.)

The IPropPostSetListener class defines only one virtual function that you are
required to implement: the notify() member function. In this function, you
define what the listener does when it is notified of a change to a property value.

This example shows the definition of a listener class. The constructor for a
listener class must accept a handle to an IAdaptor object that is their parent
because listeners are established on a per instance basis. For more information
about the notify() function, see “Creating the notify() Function” on page 6-13.

#include "mwadaptorimaq.h"
#include "MyDeviceImaq.h" // For this example

class MyDevicePropListener : public IPropPostSetListener
{
public:

// Constructor/Destructor
MyDevicePropListener(MyDeviceAdaptor* parent):

_parent(parent) {}

virtual ~DemoPropListener() {};

virtual void notify(imaqkit::IPropInfo* propertyInfo,
void* newValue);

private:

// Declare handle to parent as member data
MyDeviceAdaptor* _parent;
2

Setting Up Property Listeners
// Property Information object.
imaqkit::IPropInfo* _propInfo;

// The new value for integer properties.
int _lastIntValue;

// The new value for double properties.
double _lastDoubleValue;

// The new value for string properties.
char* _lastStrValue;

};

Creating the notify() Function
When a user changes the value of a property, the engine calls the notify()
function of the listener class associated with the property.

Your listener class notify() function must accept two parameters:

void notify(IPropInfo* propertyInfo, void* newValue)

where

• propertyInfo is a handle to an IPropInfo object — The IPropInfo class is
the interface that lets you get information about the property being
configured. For example, using IPropInfo functions you can get the name of
the property, its storage type and its default value.

• newValue is a pointer to the new property value — This value is provided as
a void* and must be cast to the appropriate C++ data type. The following
table tells which C++ data type to cast to for all of the property types
supported by the adaptor kit.

imaqkit::PropertyTypes C++ Data Type

STRING char*

DOUBLE double*

INT int*
6-13

6 Defining Device-Specific Properties

6-1
Suggested Algorithm
The design of the notify() function can vary with the needs of your device and
the facilities offered by its SDK. For example, you could create one property
listener class that handles all value changes for all properties in a particular
property container (general or device-specific). In this case, the notify()
function would include a switch statement with cases that handle each
individual property.

As an alternative, you could also define a separate listener class for each
property or each property storage type. The engine would call the specific
listener for the property specified.

You can also define listener classes that fit the way the SDK organizes property
configuration. For example, if an SDK provides one function to configure all
device properties, you can define a property listener class for these properties.

Example
This example shows an implementation of a notify() function for integer
types.

void MyDevicePropListener::notify(IPropInfo* propertyInfo,
void* newValue)

{

// Get property name from the IPropInfo object.
const char* propname = propertyInfo->getPropertyName();

// Cast newValue to the proper type
newVal = *static_cast<const int*>(newValue);

// Insert calls to device SDK to apply value to hardware.

// For debug purposes only.
imaqkit::adaptorWarn("In listener. Property name is %s\n",propname);

}

DOUBLE_ARRAY imaqkit::PropertyTypes::NDoubles*

INT_ARRAY imaqkit::PropertyTypes::NInts*

imaqkit::PropertyTypes C++ Data Type
4

Setting Up Property Listeners
Associating a Listener with a Property Container
To set up a listener for a property, you associate it with a particular property
in a particular property container. The following example shows how to add
listeners for all the device-specific properties in the adaptor property container.

1 Get a handle to the appropriate property container object.

The IEngine object has two member functions that return handles to
property containers (IPropContainer objects). Because this example
associates listeners with device-specific properties, it calls the IEngine class
getAdaptorPropContainer() member function.

imaqkit::IPropContainer* adaptorPropContainer =
getEngine()->getAdaptorPropContainer();

2 Add a listener to a property in the container, using the IPropContainer
object’s addListener() function. As arguments, specify the name of the
property and a handle to listener object.

Note Because each instance of a listener object is deleted when the video
input object is deleted, you must associate a new instance of a listener object
with each property.

The following example iterates through all the properties in the adaptor
property container, associating a listener object with each one.

void MyDeviceAdaptor::MyDeviceAdaptor()
{

// get a handle to the property container
IPropContainer* propContainer =

getEngine()->getAdaptorPropContainer();

// Determine the number of properties in the container.
int numDeviceProps = propContainer->getNumberProps();

// Retrieve the names of all the properties in the container
const char **devicePropNames = new const

char*[numDeviceProps];
 propContainer->getPropNames(devicePropNames);
6-15

6 Defining Device-Specific Properties

6-1
 // Create a variable to point to a property listener object.
MyDevicePropListener* listener;

 // For each property in the container...
 for (int i = 0; i < numDeviceProps; i++){

 // Create a listener object...
 listener = new DemoPropListener(this);

 // and associate it with a specific property.
 propContainer->addListener(devicePropNames[i], listener);
 }

 // clean up the array of property names.

 delete [] devicePropNames;

}

6

7

Storing Adaptor
Information in an IMDF
File

This chapter describes how to store information about adaptor properties in an Image Device File
(IMDF) in an XML based format.

Overview (p. 7-2) Provides an overview of the IMDF property information
mechanism

Creating an IMDF File: Toplevel
Elements (p. 7-4)

Describes the basic elements in an IMDF file t

Specifying Help in an IMDF File
(p. 7-6)

Describes how to create help text entries in an IMDF file

Specifying Device Information (p. 7-11) Describes how to store device information in an IMDF file

Specifying Property Information
(p. 7-14)

Describes how to store property information in an IMDF
file

Specifying Format Information
(p. 7-18)

Describes how to store video format information in an
IMDF file

Specifying Hardware Trigger
Information (p. 7-20)

Describes how to store hardware trigger information

Specifying Video Sources (p. 7-23) Describes how to store video source information

Defining and Including Sections
(p. 7-24)

Describes how to group IMDF elements together in
collections called sections and reference sections from
other elements

7 Storing Adaptor Information in an IMDF File

7-2
Overview
This chapter describes how to use an XML-based markup language to specify
source, property, and hardware trigger information in an Imaging Device File
(IMDF).

Note Creating an IMDF is optional. However, using an IMDF file can
simplify the coding of your adaptor’s getDeviceAttributes() function. In
addition, it is the only convenient way to make help text available for the
device-specific properties your adaptor creates.

User Scenario
When a user calls the imaqhwinfo function, the toolbox searches for adaptor
DLLs. When it finds a DLL, it also looks for a matching IMDF file in the same
directories. If found, the engine stores path information to the IMDF file. An
IMDF file must reside in the same directory as your DLL and the .imdf file
extension, such as demoimaq.imdf.

When a user calls the videoinput function to create a video input object, the
engine reads and processes the IMDF file. When it reads the file, it processes
the property, trigger, and source information specified at the top-level of the
file. (To understand the hierarchical arrangement of an IMDF file, see
“Elements of the IMDF Markup Language” on page 7-2.)

After reading all the top-level elements, the engine looks for a device element
that matches the device the user specified in the videoinput function. If found,
the engine then looks for video format element in the device element.

The engine then calls your adaptor’s getDeviceAttributes() function, as
described in Chapter 6, “Setting Up Property Listeners”, to set up device
properties.

Elements of the IMDF Markup Language
The following figure shows the hierarchical relationship of the elements of the
XML-based markup language for IMDF files. The figure shows which elements
can be children of other elements. Elements at the top-level of an IMDF file
(elements that are children of the ImageAcquisitionInfo element apply to an

Overview
entire adaptor. Elements that are children of a Device element apply only to
that device. To simplify the diagram, all possible subordinate elements are not
always shown for elements below the top-level. When used in an IMDF file,
elements are called nodes.

Hierarchy of IMDF Elements

ImageAcquisitionInfo

DeviceProperty Include SourceTriggerInfoHelp

AdaptorHelp

DeviceHelp

SeeAlso

EnumConstraintValue TriggerSource

TriggerCondition

VideoFormat

Include

Section

Property

TriggerInfo

Source
7-3

7 Storing Adaptor Information in an IMDF File

7-4
Creating an IMDF File: Toplevel Elements
The ImageAcquisitionInfo element must be the root node of all IMDF files.
Your IMDF file must begin with the ImageAcquisitionInfo node and end with
the corresponding ImageAcquisitionInfo terminator, as in this example.

<ImageAcquisitionInfo>
.
.
.
</ImageAcquisitionInfo>

The following table lists the toplevel IMDF elements that you can specify as
children of the ImageAcquisitionInfo element. The table lists the elements in
the order they must appear in an IMDF file. Note that element tag names are
case-sensitive.

Element Description

<Help> Defines the section of an IMDF file in which you specify
help text for device-specific properties — see
“Specifying Help in an IMDF File” on page 7-6. This is
an optional element. If specified, an IMDF file can
contain only one Help element.

<Property> Defines properties of a device — see “Specifying
Property Information” on page 7-14. This is an optional
element. An IMDF file can contain multiple Property
elements.

<Include> Convenient way to specify another element or group of
elements as children of another element — see
“Defining and Including Sections” on page 7-24. This is
an optional element. An IMDF file can contain multiple
Include elements.

<Source> Defines the source of video data — see “Specifying
Video Sources” on page 7-23. This is an optional
element. An IMDF file can contain multiple Source
elements.

Creating an IMDF File: Toplevel Elements
<TriggerInfo> Defines hardware trigger information — see
“Specifying Hardware Trigger Information” on
page 7-20. This is an optional element. An IMDF file
can contain only one TriggerInfo element.

<Device> Specifies information about a device — see “Specifying
Device Information” on page 7-11. This is an optional
element. An IMDF file can contain multiple Device
elements.

Element Description
7-5

7 Storing Adaptor Information in an IMDF File

7-6
Specifying Help in an IMDF File
To define help text for adaptor properties in an IMDF file, use the Help
element. You can include only one Help node in an IMDF file and it must be a
child of the root node.

As children of the Help node, you create AdaptorHelp nodes that contain the
help text for a particular property. You use the name attribute of the
AdaptorHelp element to specify which property the help is associated with.

You can optionally include device-specific content in the help text. This text
appears only when a particular device is selected. Use one or more DeviceHelp
nodes to add device-specific help to an AdaptorHelp node. You use the device
attribute of the DeviceHelp element to specify when the text should appear.
You can also create see also references for your property help using SeeAlso
nodes.

The following example outlines how to use these elements to create property
help. The words in italics represent text that you must define.

<ImageAcquisitionInfo>
<Help>

<AdaptorHelp property=propertyname>
Help text
<DeviceHelp device=devicename>

Device-specific help text
</DeviceHelp>
<SeeAlso>

References to other properties
</SeeAlso

</AdaptorHelp>
.
.
.
</Help>

</ImageAcquisitionInfo>

The following table summarizes the tags you can use to define help. For more
information, see these topics.

• “User Scenario: Viewing Property Help” on page 7-7

• “Creating AdaptorHelp Nodes” on page 7-9

Specifying Help in an IMDF File
User Scenario: Viewing Property Help
The purpose of using a Help element in an IMDF file is to create help text for
device-specific properties. A user of your adaptor can display the help text at
the command line using the imaqhelp command.

Element Description Attributes

<Help> Defines the help section in an
IMDF file. Must be child of the
ImageAcquisitionInfo node.

None

<AdaptorHelp> Defines the online help for a
property. The Help node can
contain one or more AdaptorHelp
nodes.

property=name,
where name is a
text string
specifying the
property name

<DeviceHelp> Specifies device-specific text in
property help. This element is
optional. An AdaptorHelp node
can contain multiple DeviceHelp
nodes.

device=name,
where name is a
text string that
identifies a
particular
device

<SeeAlso> Defines the see also line in
property help. This element is
optional. An AdaptorHelp node
can contain multiple SeeAlso
nodes.

None
7-7

7 Storing Adaptor Information in an IMDF File

7-8
The following example shows how a user displays the help text for a
device-specific property using the imaqhelp command. To see how to create this
help in an IMDF file, see “Creating AdaptorHelp Nodes” on page 7-9.

The items in this list correspond to the numbered elements above.

1 Device-specific properties are properties of the video source object. The
example creates the video input object and then uses the
getselectedsource function to get a handle to the video source object.

vid = videoinput('winvideo',1);
src = getselectedsource(vid);
get(src)
 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 Brightness = -10
 Contrast = 266
 Exposure = 1024
 ExposureMode = auto
 Hue = 0
 Saturation = 340
 Sharpness = 40

imaqhelp(src,'brightness')
BRIGHTNESS [-128 128] (Read-only: whileRunning)

 Specify the brightness, also called the black level.

 Brightness describes the difference in intensity of light reflected from or
 transmitted through an image independent of its hue and saturation.

 For some devices, the value is expressed in IRE units * 100. For other
 devices, the units are arbitrary. Refer to the device's documentation for
 information.

 Depending on the acquisition device, this property may have an associated
 mode property allowing this value to be controlled automatically by the device,
 or for it to be manually configured.

 See also BrightnessMode.

4

1

2

3

5

6

Specifying Help in an IMDF File
2 The example uses the get function to display a list of device-specific
properties.

3 Use the imaqhelp function to display help for one of the properties of the
video source object.

4 The first line of the help lists the name of the property with its constraints,
such as range and permission.

5 The text of the help appears exactly as you enter it in the IMDF file. You
include the text after the AdaptorHelp tag.

6 The See Also line is created by the SeeAlso node.

Creating AdaptorHelp Nodes
This section describes how to create help text for a property using the set of
help tags defined by the IMDF DTD. The following example shows the IMDF
entry for the Brightness property, displayed in “User Scenario: Viewing
Property Help” on page 7-7. The example sets the property attribute of the
AdaptorHelp tag to the name of a property.

Note Help text must start with a one-line summary. Make sure that each
line of text is no longer than 80 characters.

<AdaptorHelp property="Brightness">
Specify the brightness, also called the black level.

Brightness describes the difference in intensity of light reflected from
or transmitted through an image independent of its hue and saturation.
For some devices, the value is expressed in IRE units * 100. For other
devices, the units are arbitrary. Refer to the device's documentation for
information.

Depending on the acquisition device, this property may have an associated
mode property allowing this value to be controlled automatically by the
device, or for it to be manually configured.

<SeeAlso>BrightnessMode.</SeeAlso>

</AdaptorHelp>
7-9

7 Storing Adaptor Information in an IMDF File

7-1
Including Device-Specific Help Text
To include help text that only appears for specific devices, use DeviceHelp
elements.

In this example, the help text contains three device-specific sections. Note how
the example sets the device attribute of the DeviceHelp property to the name
of a device.

<AdaptorHelp property="StrobeEnable">
Enables the strobe output and its timer.

Upon enabling the strobe output, it will start detection
of triggers and generate output as appropriate. Consult your
hardware manual for a detailed description of the strobe output.

<DeviceHelp device="PC2Vision">See also StrobeMode,
StrobeDuration, StrobeDelay, StrobePolarity,
StrobeAlignOnHs.
</DeviceHelp>

<DeviceHelp device="PCVisionPlus">See also StrobeMode,
StrobeDelay, StrobePolarity.
</DeviceHelp>

<DeviceHelp device="PCRGB">For the PC-RGB, StrobeEnable only
enables the timing circuitry. The strobe output must still be
enabled with the StrobeOutputEnable property.

See also StrobeMode, StrobePolarity, StrobeDelay,
StrobeOutputEnable.
</DeviceHelp>

</AdaptorHelp>
0

Specifying Device Information
Specifying Device Information
To specify information about a particular device in an IMDF file, use the
Device element. You can include as many Device nodes in an IMDF file as you
want but they must all be children of the root node.

In a Device node, you specify the name of the device as an attribute. The name
is typically a text string defined by the device’s SDK. Using other IMDF
elements as children of the Device node, you can specify information about
device-specific properties, video formats, and trigger information.

The following example outlines how to use these elements to create Device
nodes. The words in italics represent text you define.

<ImageAcquisitionInfo>
<Device device=devicename>

<VideoFormat name=formatname>
</VideoFormat>

<Property constraint=constraint_value
deviceSpecific=true_or_false
name=property_name
readOnly=always_never_or_whileRunning
type=cell_double_int_or_string
min=minimum_value
max=maximum_value
optional=on_or_off
default=default_value>

</Property>

<TriggerInfo>
<TriggerSource id=ID name=string>

<TriggerCondition id=ID name=string/>
</TriggerSource>

</TriggerInfo
</Device>
.
.
.

</ImageAcquisitionInfo>
7-11

7 Storing Adaptor Information in an IMDF File

7-1
The following table summarizes the elements that can be children of a Device
node, in the order they must be specified. For an example, see “Example:
Device Node” on page 7-13.

Element Description Attributes

<VideoFormat> Specifies information about a video
format. This is an optional
element. A Device node can
contain multiple VideoFormat
nodes.

name=formatname, where formatname
is a text string that identifies a
particular device

<Include> Include a Section node in another
node. This is an optional element.
A Device node can contain
multiple Include nodes.

tag=sectionname, where sectionname
is a text string that identifies a
particular Section node

<Section> Groups a set of nodes into a
Section node. This is an optional
element. A Device node can
contain multiple Section nodes.

name=sectionname, where sectionname
is the name you want to assign to the
group of nodes

<Property> Describes the properties of a
device. This is an optional element.
A Device node can contain
multiple Property nodes.

See “Specifying Property Information”
on page 7-14.

<Source> Defines the source of video data.
This is an optional element.

See “Specifying Video Sources” on
page 7-23

<TriggerInfo> Provides information about
hardware triggers, such as source
and condition. This is an optional
element.

Note: A Device node can contain
only one TriggerInfo node.

See “Specifying Hardware Trigger
Information” on page 7-20.
2

Specifying Device Information
Example: Device Node
The following example creates a Device node containing property and trigger
information. For more information about the Property element, see
“Specifying Property Information” on page 7-14. For more information about
the TriggerInfo element, see “Specifying Hardware Trigger Information” on
page 7-20.

<Device name="PCVision">
<Property optional="on"

constraint="enum"
deviceSpecific="true"
name="SyncSource"
readOnly="whileRunning"
type="string">

<EnumConstraintValue id="1" name="strippedSync" />
<EnumConstraintValue id="2" name="separateSync" />
<EnumConstraintValue id="3" name="compositeSync" />
<EnumConstraintValue id="4" name="variableScan" />

</Property>

<Property optional="on"
constraint="enum"
deviceSpecific="true"
name="FieldStart"
readOnly="whileRunning"
type="string">

<EnumConstraintValue id="0" name="evenField" />
<EnumConstraintValue id="1" name="oddField" />

</Property>

<TriggerInfo>
<TriggerSource id="1" name="extTrig">

<TriggerCondition id="0" name="risingEdge"/>
<TriggerCondition id="1" name="fallingEdge"/>

</TriggerSource>
</TriggerInfo>

</Device>
7-13

7 Storing Adaptor Information in an IMDF File

7-1
Specifying Property Information
To specify property information in an IMDF file, use the Property element.
You can include as many Property nodes in an IMDF file as you want.
Property nodes can be children of the root node, a Device node, or a
Videoformat node. Property nodes can also be children of Section nodes.

Note Property nodes that are children of the root node affect all devices
accessed through the adaptor. Property nodes that children of a Device or
VideoFormat node affect only that device or video format.

You use attributes of the Property element to specify characteristics of the
property, such as its name, type, and constraints. For more information about
Property attributes, see “Specifying Property Element Attributes” on
page 7-15.

The following example outlines how to use these elements to specify property
information. The example shows the Property node as a child of the root node
but you use it the same way as a child of a Device or VideoFormat node. The
words in italics represent text you define.

<ImageAcquisitionInfo>
<Property constraint=constraint_value

deviceSpecific=true_or_false
name=property_name
readOnly=always_never_or_whileRunning
type=cell_double_int_or_string
min=minimum_value
max=maximum_value
optional=on_or_off
default=default_value>

</Property>
.
.
.

</ImageAcquisitionInfo>
4

Specifying Property Information
Specifying Property Element Attributes
The following table lists the attributes of a Property node in alphabetical order.
The table gives a brief description of the property and lists which properties are
required and which are optional.

Attribute Description Required

constraint Specifies the constraints on the
property — see “Specifying Values
for the Constraint Attribute” on
page 7-16.

Required

default Default value for the property. Optional

deviceSpecific Boolean value. True if property is
vendor-specific; otherwise false.

Required

min Minimum allowable value Optional

max Maximum allowable value Optional

name Name of property Required

optional If set to off, the property is created
automatically and added to the
object when the IMDF file is
processed. If on, the adaptor must
explicitly create the property. The
default is off.

Optional

readOnly Read-only status of property:
always, never, or whileRunning.

Required

type Data type of the property: cell,
double, int or string.

Required
7-15

7 Storing Adaptor Information in an IMDF File

7-1
Specifying Values for the Constraint Attribute
Constraints specify information about what are valid values for a property. For
example, to specify that a property only accepts positive values, use the
positive constraint value, as follows:

constraint=positive

The following table lists all the possible values for the constraint attribute in
alphabetical order.

Constraint Value Description

bounded Property has both a minimum and maximum
value. If you set the constraint attribute to
bounded, you must assign values to the min
and max attributes.

enum Property is an enumerated value. If set, the
Property node must contain one or more
EnumConstraintValue nodes. See “Specifying
Enumerated Values” on page 7-17.

inforpositive Value must be positive or infinite

none No constraints

positive Value must be positive

zeroinforpositive Value must be greater than zero or infinite

zeroorpositive Value must be greater than zero
6

Specifying Property Information
Specifying Enumerated Values
If your property uses enumerated values, you must set the value of the
constraint attribute to enum, the type attribute to string, and create
EnumConstraintValue elements for each enumeration. The
EnumConstraintValue nodes are children of the Property node.

When you create the EnumConstraintValue nodes, you specify two attributes:

• Value ID

• Value name

This example defines the property StrobeEnable. The constraint attribute is
set to enum. The name attribute of the EnumConstraintValue nodes defines the
possible values of this enumeration: on and off.

<Property optional="on"
constraint="enum"
deviceSpecific="true"
name="StrobeEnable"
readOnly="whileRunning"
type="string">

<EnumConstraintValue id="0" name="off" />
<EnumConstraintValue id="1" name="on" />

</Property>
7-17

7 Storing Adaptor Information in an IMDF File

7-1
Specifying Format Information
To specify the video formats supported by a particular device in an IMDF file,
use the VideoFormat element. VideoFormat nodes must be children of Device
nodes. In the VideoFormat node, you specify the name of the format as the
value of an attribute of the element.

You can also specify format-specific property and trigger information, if
necessary. A VideoFormat node can have Property and TriggerInfo nodes as
children. (VideoFormat nodes can also have a Section node as a child — see
“Defining and Including Sections” on page 7-24.)

The following example outlines how to use the VideoFormat node. The words
in italics represent text that you define.

<ImageAcquisitionInfo>
<Device device=devicename>

<VideoFormat name=formatname>
<Property constraint=constraint_value

deviceSpecific=true_or_false
name=property_name
readOnly=always_never_or_whileRunning
type=cell_double_int_or_string
min=minimum_value
max=maximum_value
optional=on_or_off
default=default_value>

</Property>

<TriggerInfo>
</TriggerInfo>

</VideoFormat>
</Device>
.
.
.

</ImageAcquisitionInfo>
8

Specifying Format Information
The following table lists the tags used to specify video format information.

Element Description Attributes

<Include> Include one or more nodes
grouped into a Section
node. This is an optional
element. A VideoFormat
node can contain multiple
Include nodes.

tag=sectionname,
where sectionname is a
text string that
identifies a particular
Section node

<Section> Groups one or more nodes
into a Section node. This is
an optional element. A
VideoFormat node can
contain multiple Section
nodes.

name=sectionname,
where sectionname is
the name you want to
assign to a particular
Section node

<Property> Describes the properties of a
video format. This is an
optional element. A
VideoFormat node can
contain multiple Property
nodes.

See “Specifying
Property Information”
on page 7-14.

<Source> Defines the source of video
data. This is an optional
element.

See “Specifying Video
Sources” on page 7-23

<TriggerInfo> Trigger information specific
to a particular video format.
This is an optional element.
A VideoFormat node can
only contain one
TriggerInfo node.

See “Specifying
Hardware Trigger
Information” on
page 7-20.
7-19

7 Storing Adaptor Information in an IMDF File

7-2
Specifying Hardware Trigger Information
To specify hardware trigger information in an IMDF file, use the TriggerInfo
node. A TriggerInfo node can be the child of the ImageAcquisitionInfo,
Device, VideoFormat, and Section nodes.

You specify the source of the hardware trigger in a TriggerSource node that is
the child of the TriggerInfo node. You specify the conditions under which
trigger fires in one or more TriggerCondition nodes, which are children of the
TriggerSource node.

The following example outlines how to use these elements to specify trigger
information. The words in italics represent text you define.

<ImageAcquisitionInfo>
<Device device=devicename>

<TriggerInfo>
<TriggerSource id=ID name=triggername>

<TriggerCondition id=ID name=conditionname>
</TriggerInfo>

</Device>
.
.
.

</ImageAcquisitionInfo>
0

Specifying Hardware Trigger Information
The following table lists the elements used to specify hardware trigger
information.

Specifying Trigger Sources
When you define a hardware trigger, you must define the source (or sources) of
the hardware trigger in one or more TriggerSource nodes. In a TriggerSource
node, you specify values for two attributes: name and id. The value of the name
attribute is visible to users of the toolbox in the display returned by the toolbox
triggerinfo function. It is typically set to some value that is recognized by the
device’s SDK.

<TriggerSource id="1" name="extTrig">
</TriggerSource>

Element Description Attributes

<TriggerInfo> Defines information about a
hardware trigger.

None

<TriggerSource> Defines the source of the
hardware trigger. A
Triggerinfo node must
contain or more
TriggerSource nodes.

See “Specifying
Trigger Sources”
on page 7-21.

<TriggerCondition> Defines a condition that
must be met before a
hardware trigger fires. A
TriggerSource node can
contain zero or more
TriggerCondition nodes.

See “Specifying
Trigger
Conditions” on
page 7-22.
7-21

7 Storing Adaptor Information in an IMDF File

7-2
Specifying Trigger Conditions
When you define a hardware trigger, you must define the conditions that must
be met before the trigger fires. The parent TriggerSource node specifies the
trigger. In a TriggerCondition node, you specify values for two attributes:
name and id. The value of the name attribute is visible to users of the toolbox in
the display returned by the toolbox triggerinfo function. It is typically set to
some value that is recognized by the device’s SDK.

<TriggerCondition id="1" name="risingEdge">
</TriggerCondition>
2

Specifying Video Sources
Specifying Video Sources
To specify the video source in an IMDF file, use the Source element. A Source
node can only be the child of the IMDF root element and it cannot have any
child nodes of its own.

When you create a Source node, you must specify values for two attributes:
name and id. In the name attribute, you specify the name of the source as it
appears in the video source object's Name property. The id is typically set to
some value that is recognized by the vendor's SDK. The id is only used by the
adaptor and needs only to be unique between sources.

The following example outlines how to create a Source node. The words in
italics represent text you define.

<ImageAcquisitionInfo>

<Source id=ID name=sourcename>
</Source>
.
.
.

</ImageAcquisitionInfo>
7-23

7 Storing Adaptor Information in an IMDF File

7-2
Defining and Including Sections
You can gather one or more Property or TriggernInfo nodes into a group by
using the Section element. A Section node can contain one or more Property
nodes or a single TriggerInfo node or another Section node. A Section node
can the child of a Device, or VideoFormat node. Using the Include element, a
Section node can be indirectly be a child of the root node, Device,
VideoFormat, Section, or TriggerInfo nodes.

Section nodes can simplify an XML file. You can reuse node definitions
without repeating the XML statements. For example, you can define common
elements, such as video formats, that can be shared by several Device nodes in
the XML file.

The following example outlines how to create a Section node and use it in an
IMDF file. The words in italics represent text you define.

<ImageAcquisitionInfo>
<Device device=devicename1>

<Section name=sectionname>
<Property>
</Property>

<TriggerInfo>
</TriggerInfo

</Section>
<Property>
</Property>

</Device>
<Device device=devicename2>

<Include tag=sectionname/>
</Device>
.
.
.

</ImageAcquisitionInfo>
4

Index
A
acquiring frames

determining when it is done 5-20
acquisition thread

algorithm 5-19
adaptor data

storing device-specific information 3-17
adaptor property container 6-11
AdaptorHelp elements

creating 7-9
adaptors

defining device and format information 3-8
defining device attributes 6-2
registering 1-11
unloading DLL 3-19

C
closeDevice() virtual function

implementing 5-10
closing connection to device 5-10
constraint attribute

specifying 7-16

D
data types

frame types 5-7
property types mapped to C++ data types 6-13

device drivers
specifying name and version 5-34

Device element
example 7-13
overview 7-11
device information
classes 3-8
specifying 3-11
storing in IMDF file 7-11

devices
storing device-specific information 3-17

E
engine property container 6-11
enumerated values

specifying in IMDF file 7-17
error messages

displaying 3-20
exporting adaptor functions 2-19, 3-5

F
formats

specifying video format in IMDF file 7-18
frame count

incrementing in frame acquisition loop 5-21
frame types

packed and planar 5-9

G
getAvailHW() function

implementing 3-8
getDeviceAttributes() function

implementing 6-2

H
hardware triggers
Index-1

Index

Ind
determining if configured 5-28
specifying in IMDF file 7-20

Help element
overview 7-6

help text
for properties 7-9
format guidelines 7-9

I
IDeviceFormat class

creating 3-12
storing device format information 3-8

IDeviceInfo class
storing device information 3-8

IDeviceInfo objects
creating 3-11

IHardwareInfo class
storing device and format information 3-8

image frames
determining when to send to engine 5-21
frame types 5-7
sending to engine 5-21

image resolution
specifying in adaptor class 5-5

ImageAcquisitionInfo element
overview 7-4

Imaging Device Files
See IMDF files

imaqregister

using 1-11
IMDF files

defining sections 7-24
including sections 7-24
toplevel elements 7-4

IPropPostSetListener class
deriving from 6-12
ex-2
L
listeners

See property listeners

M
module definition files

exporting adaptor functions 2-19, 3-5
specifying in Visual Studio 2-20

N
notify()

design considerations 6-14
implementing the listener class notify function

6-13

P
packed frame types 5-9
planar frame types 5-9
preferences

registering an adaptor 1-11
properties

specifying attributes in IMDF file 7-15
specifying constraints in IMDF file 7-16
storing in IMDF file 7-14

property containers
two types 6-11

property data types
mapped to C++ data types 6-13

Property element
attributes 7-15
overview 7-14
specifying constraints in IMDF file 7-16

property help text
creating 7-9

Index
property listeners
defining listener class 6-12
setting up 4-13
setting up listeners

R
registering adaptors

using imaqregister 1-11

S
Source element

overview 7-23
startCapture() virtual function

implementing 5-10, 5-15
starting the acquisition of frames 5-10, 5-15
stopCapture() virtual function

implementing 5-15
stopping the acquisition of frames 5-15

T
thread message loop

algorithm 5-19
timestamp

logging with image data 5-21
trigger conditions

specifying in IMDF file 7-22
trigger sources

specifying in IMDF file 7-21
TriggerInfo element

overview 7-20

U
uninitializeAdaptor() function

implementing 3-19

V
video formats

specifying in IMDF file 7-18
video sources

specifying in IMDF file 7-23
VideoFormat element

overview 7-18

W
warning messages

displaying 3-20
Index-3

Index

Ind
ex-4

Index
Index-5

Index
Index-6

	Getting Started
	Overview
	What Knowledge Is Required?

	Creating an Adaptor
	Looking at the Demo Adaptor
	Finding the Demo Adaptor Source Files
	Viewing the Demo Adaptor Source Files
	Setting Breakpoints
	Building the Demo Adaptor
	Registering an Adaptor with the Toolbox
	Running the Demo Adaptor

	Setting Up Your Build Environment
	Overview
	Required Header Files
	Required Libraries

	Creating an Adaptor Project
	Adding the Adaptor Kit Project to Your Solution

	Specifying Header File Locations
	Specifying Header Files in Microsoft Visual C++ .Net
	Using Environment Variables

	Specifying Libraries and Library Paths
	Specifying Libraries in Microsoft Visual C++ .Net

	Configuring Other Project Parameters
	Exporting Adaptor Functions
	Setting Up a Module Definition File

	Providing Hardware Information
	Adaptor Exported Functions: An Overview
	Creating a Stub Adaptor
	Performing Adaptor and Device SDK Initialization
	Example

	Specifying Device and Format Information
	Using Objects to Store Device and Format Information
	Suggested Algorithm
	Storing Device Information
	Storing Format Information
	Example: Providing Device and Format Information

	Defining Classes to Hold Device-Specific Information
	Defining a Device or Format Information Class
	Storing Adaptor Data

	Unloading Your Adaptor DLL
	Example

	Returning Warnings and Errors to MATLAB

	Defining Your Adaptor Class
	Overview
	Summary of IAdaptor Abstract Class Virtual Functions
	Creating a Stub Implementation of Your Adaptor Class
	Identifying Video Sources
	Suggested Algorithm

	Instantiating an Adaptor Object
	Suggested Algorithm
	Implementing Your Adaptor Class Constructor
	Implementing Your Adaptor Class Destructor

	Acquiring Image Data
	Overview
	User Scenario
	Triggering
	Overview of Virtual Functions Used to Acquire Data

	Specifying the Format of the Image Data
	Specifying Image Dimensions
	Specifying Frame Type

	Opening and Closing a Connection with a Device
	Suggested Algorithm for openDevice()
	Suggested Algorithm for closeDevice()

	Starting and Stopping Image Acquisition
	Suggested Algorithm for startCapture()
	Suggested Algorithm for stopCapture()

	Implementing the Acquisition Thread Function
	User Scenario
	Suggested Algorithm
	Example

	Supporting ROIs
	Implementing Software ROI
	Implementing Hardware ROI

	Supporting Hardware Triggers
	Example

	Using Critical Sections
	Understanding Critical Sections
	Example: Using a Critical Section

	Specifying Device Driver Identification Information
	User Scenario
	Example

	Defining Device-Specific Properties
	Overview
	User Scenario
	Suggested Algorithm

	Creating Device Properties
	Selecting the Property Creation Function
	Reading Properties from an IMDF File
	Creating Property Help
	Example

	Defining Hardware Trigger Configurations
	Setting Up Property Listeners
	User Scenario
	Receiving Notification of Property Value Changes
	Defining a Listener Class
	Creating the notify() Function
	Associating a Listener with a Property Container

	Storing Adaptor Information in an IMDF File
	Overview
	User Scenario
	Elements of the IMDF Markup Language

	Creating an IMDF File: Toplevel Elements
	Specifying Help in an IMDF File
	User Scenario: Viewing Property Help
	Creating AdaptorHelp Nodes

	Specifying Device Information
	Example: Device Node

	Specifying Property Information
	Specifying Property Element Attributes

	Specifying Format Information
	Specifying Hardware Trigger Information
	Specifying Trigger Sources
	Specifying Trigger Conditions

	Specifying Video Sources
	Defining and Including Sections

	Index

